脉冲序列信号积分的改进相干霍夫方法

Shuai Ding, Hui Wang, Defeng Chen, Tuo Fu
{"title":"脉冲序列信号积分的改进相干霍夫方法","authors":"Shuai Ding, Hui Wang, Defeng Chen, Tuo Fu","doi":"10.1109/SIPROCESS.2016.7888311","DOIUrl":null,"url":null,"abstract":"A coherent Hough method is proposed here to integrate the pulse-train signal. Based on a narrowband echo model, the suggested method implements the coherent integration by compensating the modulated phase terms from pulse to pulse before applying Hough transform. The improved method outperforms standard Hough transform, particularly in a very low SNR environment. The algorithm's performance is analyzed and its validity is further verified by simulation experiments.","PeriodicalId":142802,"journal":{"name":"2016 IEEE International Conference on Signal and Image Processing (ICSIP)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A modified coherent hough method for pulse-train signal integration\",\"authors\":\"Shuai Ding, Hui Wang, Defeng Chen, Tuo Fu\",\"doi\":\"10.1109/SIPROCESS.2016.7888311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A coherent Hough method is proposed here to integrate the pulse-train signal. Based on a narrowband echo model, the suggested method implements the coherent integration by compensating the modulated phase terms from pulse to pulse before applying Hough transform. The improved method outperforms standard Hough transform, particularly in a very low SNR environment. The algorithm's performance is analyzed and its validity is further verified by simulation experiments.\",\"PeriodicalId\":142802,\"journal\":{\"name\":\"2016 IEEE International Conference on Signal and Image Processing (ICSIP)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Signal and Image Processing (ICSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIPROCESS.2016.7888311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Signal and Image Processing (ICSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIPROCESS.2016.7888311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种相干霍夫方法对脉冲序列信号进行积分。该方法基于窄带回波模型,在进行霍夫变换之前,先对脉冲间调制相位项进行补偿,实现相干积分。改进后的方法优于标准霍夫变换,特别是在非常低信噪比的环境中。分析了算法的性能,并通过仿真实验进一步验证了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A modified coherent hough method for pulse-train signal integration
A coherent Hough method is proposed here to integrate the pulse-train signal. Based on a narrowband echo model, the suggested method implements the coherent integration by compensating the modulated phase terms from pulse to pulse before applying Hough transform. The improved method outperforms standard Hough transform, particularly in a very low SNR environment. The algorithm's performance is analyzed and its validity is further verified by simulation experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信