生成非高斯连续马尔可夫过程的随机微分方程

V. Lyandres
{"title":"生成非高斯连续马尔可夫过程的随机微分方程","authors":"V. Lyandres","doi":"10.37394/232014.2021.17.8","DOIUrl":null,"url":null,"abstract":"Continuous Markov processes widely used as a tool for modeling random phenomena in numerous applications, can be defined as solutions of generally nonlinear stochastic differential equations (SDEs) with certain drift and diffusion coefficients which together governs the process’ probability density and correlation functions. Usually it is assumed that the diffusion coefficient does not depend on the process' current value. For presentation of non-Gaussian real processes this assumption becomes undesirable, leads generally to complexity of the correlation function estimation. We consider its analysis for the process with particular pairs of the drift and diffusion coefficients providing the given stationary probability distribution of the considered process","PeriodicalId":305800,"journal":{"name":"WSEAS TRANSACTIONS ON SIGNAL PROCESSING","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Stochastic Differential Equations Generating Non-gaussian Continuous Markov Process\",\"authors\":\"V. Lyandres\",\"doi\":\"10.37394/232014.2021.17.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Continuous Markov processes widely used as a tool for modeling random phenomena in numerous applications, can be defined as solutions of generally nonlinear stochastic differential equations (SDEs) with certain drift and diffusion coefficients which together governs the process’ probability density and correlation functions. Usually it is assumed that the diffusion coefficient does not depend on the process' current value. For presentation of non-Gaussian real processes this assumption becomes undesirable, leads generally to complexity of the correlation function estimation. We consider its analysis for the process with particular pairs of the drift and diffusion coefficients providing the given stationary probability distribution of the considered process\",\"PeriodicalId\":305800,\"journal\":{\"name\":\"WSEAS TRANSACTIONS ON SIGNAL PROCESSING\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS TRANSACTIONS ON SIGNAL PROCESSING\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/232014.2021.17.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS TRANSACTIONS ON SIGNAL PROCESSING","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232014.2021.17.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

连续马尔可夫过程在许多应用中被广泛用作模拟随机现象的工具,它可以被定义为具有一定漂移系数和扩散系数的一般非线性随机微分方程(SDEs)的解,它们共同决定了过程的概率密度和相关函数。通常假定扩散系数不依赖于过程的电流值。对于非高斯实过程的表示,这种假设变得不可取,通常导致相关函数估计的复杂性。给出所考虑过程的给定平稳概率分布,考虑其对漂移系数和扩散系数的特定对过程的分析
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Stochastic Differential Equations Generating Non-gaussian Continuous Markov Process
Continuous Markov processes widely used as a tool for modeling random phenomena in numerous applications, can be defined as solutions of generally nonlinear stochastic differential equations (SDEs) with certain drift and diffusion coefficients which together governs the process’ probability density and correlation functions. Usually it is assumed that the diffusion coefficient does not depend on the process' current value. For presentation of non-Gaussian real processes this assumption becomes undesirable, leads generally to complexity of the correlation function estimation. We consider its analysis for the process with particular pairs of the drift and diffusion coefficients providing the given stationary probability distribution of the considered process
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信