利用视觉上下文语义进行声源定位

Xinchi Zhou, Dongzhan Zhou, Di Hu, Hang Zhou, Wanli Ouyang
{"title":"利用视觉上下文语义进行声源定位","authors":"Xinchi Zhou, Dongzhan Zhou, Di Hu, Hang Zhou, Wanli Ouyang","doi":"10.1109/WACV56688.2023.00517","DOIUrl":null,"url":null,"abstract":"Self-supervised sound source localization in unconstrained visual scenes is an important task of audio-visual learning. In this paper, we propose a visual reasoning module to explicitly exploit the rich visual context semantics, which alleviates the issue of insufficient utilization of visual information in previous works. The learning objectives are carefully designed to provide stronger supervision signals for the extracted visual semantics while enhancing the audio-visual interactions, which lead to more robust feature representations. Extensive experimental results demonstrate that our approach significantly boosts the localization performances on various datasets, even without initializations pretrained on ImageNet. Moreover, with the visual context exploitation, our framework can accomplish both the audio-visual and purely visual inference, which expands the application scope of the sound source localization task and further raises the competitiveness of our approach.","PeriodicalId":270631,"journal":{"name":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Exploiting Visual Context Semantics for Sound Source Localization\",\"authors\":\"Xinchi Zhou, Dongzhan Zhou, Di Hu, Hang Zhou, Wanli Ouyang\",\"doi\":\"10.1109/WACV56688.2023.00517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Self-supervised sound source localization in unconstrained visual scenes is an important task of audio-visual learning. In this paper, we propose a visual reasoning module to explicitly exploit the rich visual context semantics, which alleviates the issue of insufficient utilization of visual information in previous works. The learning objectives are carefully designed to provide stronger supervision signals for the extracted visual semantics while enhancing the audio-visual interactions, which lead to more robust feature representations. Extensive experimental results demonstrate that our approach significantly boosts the localization performances on various datasets, even without initializations pretrained on ImageNet. Moreover, with the visual context exploitation, our framework can accomplish both the audio-visual and purely visual inference, which expands the application scope of the sound source localization task and further raises the competitiveness of our approach.\",\"PeriodicalId\":270631,\"journal\":{\"name\":\"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV56688.2023.00517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV56688.2023.00517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

无约束视觉场景下的自监督声源定位是视听学习的重要课题。在本文中,我们提出了一个视觉推理模块,明确地利用了丰富的视觉上下文语义,缓解了以往工作中对视觉信息利用不足的问题。学习目标经过精心设计,为提取的视觉语义提供更强的监督信号,同时增强视听交互,从而获得更鲁棒的特征表示。大量的实验结果表明,即使没有在ImageNet上进行预训练的初始化,我们的方法也能显著提高在各种数据集上的定位性能。此外,通过对视觉上下文的开发,我们的框架既可以完成视听推理,也可以完成纯视觉推理,这扩大了声源定位任务的应用范围,进一步提高了我们的方法的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploiting Visual Context Semantics for Sound Source Localization
Self-supervised sound source localization in unconstrained visual scenes is an important task of audio-visual learning. In this paper, we propose a visual reasoning module to explicitly exploit the rich visual context semantics, which alleviates the issue of insufficient utilization of visual information in previous works. The learning objectives are carefully designed to provide stronger supervision signals for the extracted visual semantics while enhancing the audio-visual interactions, which lead to more robust feature representations. Extensive experimental results demonstrate that our approach significantly boosts the localization performances on various datasets, even without initializations pretrained on ImageNet. Moreover, with the visual context exploitation, our framework can accomplish both the audio-visual and purely visual inference, which expands the application scope of the sound source localization task and further raises the competitiveness of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信