{"title":"图特征的属性感知非线性共嵌入","authors":"Ahmed Rashed, Josif Grabocka, L. Schmidt-Thieme","doi":"10.1145/3298689.3346999","DOIUrl":null,"url":null,"abstract":"In very sparse recommender data sets, attributes of users such as age, gender and home location and attributes of items such as, in the case of movies, genre, release year, and director can improve the recommendation accuracy, especially for users and items that have few ratings. While most recommendation models can be extended to take attributes of users and items into account, their architectures usually become more complicated. While attributes for items are often easy to be provided, attributes for users are often scarce for reasons of privacy or simply because they are not relevant to the operational process at hand. In this paper, we address these two problems for attribute-aware recommender systems by proposing a simple model that co-embeds users and items into a joint latent space in a similar way as a vanilla matrix factorization, but with non-linear latent features construction that seamlessly can ingest user or item attributes or both (GraphRec). To address the second problem, scarce attributes, the proposed model treats the user-item relation as a bipartite graph and constructs generic user and item attributes via the Laplacian of the user-item co-occurrence graph that requires no further external side information but the mere rating matrix. In experiments on three recommender datasets, we show that GraphRec significantly outperforms existing state-of-the-art attribute-aware and content-aware recommender systems even without using any side information.","PeriodicalId":215384,"journal":{"name":"Proceedings of the 13th ACM Conference on Recommender Systems","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Attribute-aware non-linear co-embeddings of graph features\",\"authors\":\"Ahmed Rashed, Josif Grabocka, L. Schmidt-Thieme\",\"doi\":\"10.1145/3298689.3346999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In very sparse recommender data sets, attributes of users such as age, gender and home location and attributes of items such as, in the case of movies, genre, release year, and director can improve the recommendation accuracy, especially for users and items that have few ratings. While most recommendation models can be extended to take attributes of users and items into account, their architectures usually become more complicated. While attributes for items are often easy to be provided, attributes for users are often scarce for reasons of privacy or simply because they are not relevant to the operational process at hand. In this paper, we address these two problems for attribute-aware recommender systems by proposing a simple model that co-embeds users and items into a joint latent space in a similar way as a vanilla matrix factorization, but with non-linear latent features construction that seamlessly can ingest user or item attributes or both (GraphRec). To address the second problem, scarce attributes, the proposed model treats the user-item relation as a bipartite graph and constructs generic user and item attributes via the Laplacian of the user-item co-occurrence graph that requires no further external side information but the mere rating matrix. In experiments on three recommender datasets, we show that GraphRec significantly outperforms existing state-of-the-art attribute-aware and content-aware recommender systems even without using any side information.\",\"PeriodicalId\":215384,\"journal\":{\"name\":\"Proceedings of the 13th ACM Conference on Recommender Systems\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th ACM Conference on Recommender Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3298689.3346999\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3298689.3346999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Attribute-aware non-linear co-embeddings of graph features
In very sparse recommender data sets, attributes of users such as age, gender and home location and attributes of items such as, in the case of movies, genre, release year, and director can improve the recommendation accuracy, especially for users and items that have few ratings. While most recommendation models can be extended to take attributes of users and items into account, their architectures usually become more complicated. While attributes for items are often easy to be provided, attributes for users are often scarce for reasons of privacy or simply because they are not relevant to the operational process at hand. In this paper, we address these two problems for attribute-aware recommender systems by proposing a simple model that co-embeds users and items into a joint latent space in a similar way as a vanilla matrix factorization, but with non-linear latent features construction that seamlessly can ingest user or item attributes or both (GraphRec). To address the second problem, scarce attributes, the proposed model treats the user-item relation as a bipartite graph and constructs generic user and item attributes via the Laplacian of the user-item co-occurrence graph that requires no further external side information but the mere rating matrix. In experiments on three recommender datasets, we show that GraphRec significantly outperforms existing state-of-the-art attribute-aware and content-aware recommender systems even without using any side information.