压缩感知后非线性参数估计的fisher信息和Cramer-Rao界分析

Pooria Pakrooh, L. Scharf, A. Pezeshki, Yuejie Chi
{"title":"压缩感知后非线性参数估计的fisher信息和Cramer-Rao界分析","authors":"Pooria Pakrooh, L. Scharf, A. Pezeshki, Yuejie Chi","doi":"10.1109/ICASSP.2013.6638944","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze the impact of compressed sensing with random matrices on Fisher information and the CRB for estimating unknown parameters in the mean value function of a multivariate normal distribution. We consider the class of random compression matrices that satisfy a version of the Johnson-Lindenstrauss lemma, and we derive analytical lower and upper bounds on the CRB for estimating parameters from randomly compressed data. These bounds quantify the potential loss in CRB as a function of Fisher information of the non-compressed data. In our numerical examples, we consider a direction of arrival estimation problem and compare the actual loss in CRB with our bounds.","PeriodicalId":183968,"journal":{"name":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Analysis of fisher information and the Cramer-Rao bound for nonlinear parameter estimation after compressed sensing\",\"authors\":\"Pooria Pakrooh, L. Scharf, A. Pezeshki, Yuejie Chi\",\"doi\":\"10.1109/ICASSP.2013.6638944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we analyze the impact of compressed sensing with random matrices on Fisher information and the CRB for estimating unknown parameters in the mean value function of a multivariate normal distribution. We consider the class of random compression matrices that satisfy a version of the Johnson-Lindenstrauss lemma, and we derive analytical lower and upper bounds on the CRB for estimating parameters from randomly compressed data. These bounds quantify the potential loss in CRB as a function of Fisher information of the non-compressed data. In our numerical examples, we consider a direction of arrival estimation problem and compare the actual loss in CRB with our bounds.\",\"PeriodicalId\":183968,\"journal\":{\"name\":\"2013 IEEE International Conference on Acoustics, Speech and Signal Processing\",\"volume\":\"132 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Acoustics, Speech and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2013.6638944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2013.6638944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

本文分析了随机矩阵压缩感知对Fisher信息的影响,以及多元正态分布均值函数中未知参数估计的CRB。我们考虑了一类满足Johnson-Lindenstrauss引理的随机压缩矩阵,并推导了从随机压缩数据中估计参数的CRB的解析下界和上界。这些界限将CRB中的潜在损失量化为非压缩数据的Fisher信息的函数。在我们的数值例子中,我们考虑了到达方向估计问题,并将CRB中的实际损失与我们的界进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of fisher information and the Cramer-Rao bound for nonlinear parameter estimation after compressed sensing
In this paper, we analyze the impact of compressed sensing with random matrices on Fisher information and the CRB for estimating unknown parameters in the mean value function of a multivariate normal distribution. We consider the class of random compression matrices that satisfy a version of the Johnson-Lindenstrauss lemma, and we derive analytical lower and upper bounds on the CRB for estimating parameters from randomly compressed data. These bounds quantify the potential loss in CRB as a function of Fisher information of the non-compressed data. In our numerical examples, we consider a direction of arrival estimation problem and compare the actual loss in CRB with our bounds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信