用回归模型解释超级计算机I/O系统的写性能

Bing Xie, Zilong Tan, P. Carns, J. Chase, K. Harms, J. Lofstead, S. Oral, Sudharshan S. Vazhkudai, Feiyi Wang
{"title":"用回归模型解释超级计算机I/O系统的写性能","authors":"Bing Xie, Zilong Tan, P. Carns, J. Chase, K. Harms, J. Lofstead, S. Oral, Sudharshan S. Vazhkudai, Feiyi Wang","doi":"10.1109/IPDPS49936.2021.00064","DOIUrl":null,"url":null,"abstract":"This work seeks to advance the state of the art in HPC I/O performance analysis and interpretation. In particular, we demonstrate effective techniques to: (1) model output performance in the presence of I/O interference from production loads; (2) build features from write patterns and key parameters of the system architecture and configurations; (3) employ suitable machine learning algorithms to improve model accuracy. We train models with five popular regression algorithms and conduct experiments on two distinct production HPC platforms. We find that the lasso and random forest models predict output performance with high accuracy on both of the target systems. We also explore use of the models to guide adaptation in I/O middleware systems, and show potential for improvements of at least 15% from model-guided adaptation on 70% of samples, and improvements up to $10 \\times$ on some samples for both of the target systems.","PeriodicalId":372234,"journal":{"name":"2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Interpreting Write Performance of Supercomputer I/O Systems with Regression Models\",\"authors\":\"Bing Xie, Zilong Tan, P. Carns, J. Chase, K. Harms, J. Lofstead, S. Oral, Sudharshan S. Vazhkudai, Feiyi Wang\",\"doi\":\"10.1109/IPDPS49936.2021.00064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work seeks to advance the state of the art in HPC I/O performance analysis and interpretation. In particular, we demonstrate effective techniques to: (1) model output performance in the presence of I/O interference from production loads; (2) build features from write patterns and key parameters of the system architecture and configurations; (3) employ suitable machine learning algorithms to improve model accuracy. We train models with five popular regression algorithms and conduct experiments on two distinct production HPC platforms. We find that the lasso and random forest models predict output performance with high accuracy on both of the target systems. We also explore use of the models to guide adaptation in I/O middleware systems, and show potential for improvements of at least 15% from model-guided adaptation on 70% of samples, and improvements up to $10 \\\\times$ on some samples for both of the target systems.\",\"PeriodicalId\":372234,\"journal\":{\"name\":\"2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"volume\":\"132 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS49936.2021.00064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS49936.2021.00064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

这项工作旨在推动高性能计算I/O性能分析和解释的艺术状态。特别是,我们展示了有效的技术:(1)在生产负载存在I/O干扰的情况下建立输出性能模型;(2)从系统架构和配置的写入模式和关键参数构建功能;(3)采用合适的机器学习算法,提高模型精度。我们用五种流行的回归算法训练模型,并在两个不同的生产HPC平台上进行实验。我们发现套索和随机森林模型对两个目标系统的输出性能都有很高的预测精度。我们还探索了在I/O中间件系统中使用模型来指导自适应,并显示了在70%的样本上,模型引导的自适应至少有15%的改进潜力,并且在两个目标系统的某些样本上,改进幅度高达10倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interpreting Write Performance of Supercomputer I/O Systems with Regression Models
This work seeks to advance the state of the art in HPC I/O performance analysis and interpretation. In particular, we demonstrate effective techniques to: (1) model output performance in the presence of I/O interference from production loads; (2) build features from write patterns and key parameters of the system architecture and configurations; (3) employ suitable machine learning algorithms to improve model accuracy. We train models with five popular regression algorithms and conduct experiments on two distinct production HPC platforms. We find that the lasso and random forest models predict output performance with high accuracy on both of the target systems. We also explore use of the models to guide adaptation in I/O middleware systems, and show potential for improvements of at least 15% from model-guided adaptation on 70% of samples, and improvements up to $10 \times$ on some samples for both of the target systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信