CV转换和稳定元音区域对语言识别的意义

Dipanjan Nandi, A. Dutta, K. S. Rao
{"title":"CV转换和稳定元音区域对语言识别的意义","authors":"Dipanjan Nandi, A. Dutta, K. S. Rao","doi":"10.1109/IC3.2014.6897226","DOIUrl":null,"url":null,"abstract":"The present work explores the significance of the consonant-vowel (CV) transition and steady vowel (SV) regions for language identification (LID) task. The language-specific vocal tract information represented by Mel-frequency cepstral coefficients (MFCCs), extracted from the CV transition and steady vowel regions for LID task. The duration of CV transition and steady vowel regions are varied to analyze LID performance. The evidences obtained from the CV transition and steady vowel regions are combined to investigate the existence of complementary information in these two regions. The LID study carried out on 27 Indian languages from IITKGP-MLILSC speech database. The Gaussian mixture modelling (GMM) technique has been used for developing the language models. The average LID performances obtained by processing CV transition region and steady vowel regions are 70% and 71% respectively. In contemporary works, LID system has been developed by processing whole speech utterances, which provides 72% recognition accuracy.","PeriodicalId":444918,"journal":{"name":"2014 Seventh International Conference on Contemporary Computing (IC3)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Significance of CV transition and steady vowel regions for language identification\",\"authors\":\"Dipanjan Nandi, A. Dutta, K. S. Rao\",\"doi\":\"10.1109/IC3.2014.6897226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present work explores the significance of the consonant-vowel (CV) transition and steady vowel (SV) regions for language identification (LID) task. The language-specific vocal tract information represented by Mel-frequency cepstral coefficients (MFCCs), extracted from the CV transition and steady vowel regions for LID task. The duration of CV transition and steady vowel regions are varied to analyze LID performance. The evidences obtained from the CV transition and steady vowel regions are combined to investigate the existence of complementary information in these two regions. The LID study carried out on 27 Indian languages from IITKGP-MLILSC speech database. The Gaussian mixture modelling (GMM) technique has been used for developing the language models. The average LID performances obtained by processing CV transition region and steady vowel regions are 70% and 71% respectively. In contemporary works, LID system has been developed by processing whole speech utterances, which provides 72% recognition accuracy.\",\"PeriodicalId\":444918,\"journal\":{\"name\":\"2014 Seventh International Conference on Contemporary Computing (IC3)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Seventh International Conference on Contemporary Computing (IC3)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC3.2014.6897226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Seventh International Conference on Contemporary Computing (IC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3.2014.6897226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本研究探讨了辅音-元音(CV)转换和稳定元音(SV)区域在语言识别(LID)任务中的意义。用Mel-frequency倒谱系数(MFCCs)表示的特定语言的声道信息,从CV转换区和稳定元音区提取。通过改变CV转换持续时间和稳定元音区域来分析LID的性能。结合从CV过渡区和稳定元音区获得的证据,探讨了这两个区域是否存在互补信息。LID研究对IITKGP-MLILSC语音数据库中的27种印度语言进行了研究。采用高斯混合建模(GMM)技术建立语言模型。通过处理CV过渡区和稳定元音区获得的平均LID性能分别为70%和71%。在当代作品中,LID系统通过对整个语音进行处理而发展起来,其识别准确率达到72%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Significance of CV transition and steady vowel regions for language identification
The present work explores the significance of the consonant-vowel (CV) transition and steady vowel (SV) regions for language identification (LID) task. The language-specific vocal tract information represented by Mel-frequency cepstral coefficients (MFCCs), extracted from the CV transition and steady vowel regions for LID task. The duration of CV transition and steady vowel regions are varied to analyze LID performance. The evidences obtained from the CV transition and steady vowel regions are combined to investigate the existence of complementary information in these two regions. The LID study carried out on 27 Indian languages from IITKGP-MLILSC speech database. The Gaussian mixture modelling (GMM) technique has been used for developing the language models. The average LID performances obtained by processing CV transition region and steady vowel regions are 70% and 71% respectively. In contemporary works, LID system has been developed by processing whole speech utterances, which provides 72% recognition accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信