基于子空间算法的不同稀疏阵列DOA估计综述

Rajen Kumar Patra, A. Dhar
{"title":"基于子空间算法的不同稀疏阵列DOA估计综述","authors":"Rajen Kumar Patra, A. Dhar","doi":"10.1109/ICORT52730.2021.9581714","DOIUrl":null,"url":null,"abstract":"In this paper, a detailed review is carried out for different sparse array structures for direction-of-arrival (DOA) estimation. We know that there are different sparse arrays like the minimum redundancy array, minimum hole array, nested array, supernested array, coprime array, Cantor array etc. for DOA estimation. Here, we employ the spatial smoothing MUltiple SIgnal Classification (MUSIC) algorithm for DOA estimation. The spatial smoothing technique can be applied to the hole-free part of the difference coarray of the sparse array. We discuss the configuration of each of these arrays and look into the main properties of the arrays with their advantages and disadvantages. We also analyze the environment in which a particular array can be used to give its optimum performance. We then carry out the simulations to compare the performances of the arrays.","PeriodicalId":344816,"journal":{"name":"2021 2nd International Conference on Range Technology (ICORT)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A review of different Sparse Arrays for DOA estimation using Subspace based algorithm\",\"authors\":\"Rajen Kumar Patra, A. Dhar\",\"doi\":\"10.1109/ICORT52730.2021.9581714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a detailed review is carried out for different sparse array structures for direction-of-arrival (DOA) estimation. We know that there are different sparse arrays like the minimum redundancy array, minimum hole array, nested array, supernested array, coprime array, Cantor array etc. for DOA estimation. Here, we employ the spatial smoothing MUltiple SIgnal Classification (MUSIC) algorithm for DOA estimation. The spatial smoothing technique can be applied to the hole-free part of the difference coarray of the sparse array. We discuss the configuration of each of these arrays and look into the main properties of the arrays with their advantages and disadvantages. We also analyze the environment in which a particular array can be used to give its optimum performance. We then carry out the simulations to compare the performances of the arrays.\",\"PeriodicalId\":344816,\"journal\":{\"name\":\"2021 2nd International Conference on Range Technology (ICORT)\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 2nd International Conference on Range Technology (ICORT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICORT52730.2021.9581714\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd International Conference on Range Technology (ICORT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORT52730.2021.9581714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文详细综述了不同稀疏阵列结构在到达方向估计中的应用。我们知道有不同的稀疏阵列,如最小冗余阵列、最小孔阵列、嵌套阵列、超嵌套阵列、协素数阵列、Cantor阵列等用于DOA估计。本文采用空间平滑多信号分类(MUSIC)算法进行DOA估计。空间平滑技术可以应用于稀疏阵列差分阵的无孔部分。我们将讨论这些数组的配置,并研究这些数组的主要属性及其优缺点。我们还分析了特定阵列可以使用的环境,以获得最佳性能。然后,我们进行了仿真来比较阵列的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A review of different Sparse Arrays for DOA estimation using Subspace based algorithm
In this paper, a detailed review is carried out for different sparse array structures for direction-of-arrival (DOA) estimation. We know that there are different sparse arrays like the minimum redundancy array, minimum hole array, nested array, supernested array, coprime array, Cantor array etc. for DOA estimation. Here, we employ the spatial smoothing MUltiple SIgnal Classification (MUSIC) algorithm for DOA estimation. The spatial smoothing technique can be applied to the hole-free part of the difference coarray of the sparse array. We discuss the configuration of each of these arrays and look into the main properties of the arrays with their advantages and disadvantages. We also analyze the environment in which a particular array can be used to give its optimum performance. We then carry out the simulations to compare the performances of the arrays.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信