Sahote Tejinder Singh, Madhuri Dinesh Gabhane, C. Mahamuni
{"title":"基于Python实现的垃圾邮件检测的机器学习和深度学习算法研究","authors":"Sahote Tejinder Singh, Madhuri Dinesh Gabhane, C. Mahamuni","doi":"10.1109/ICDT57929.2023.10150836","DOIUrl":null,"url":null,"abstract":"Spam is the act of sending unsolicited emails to a large number of users for phishing, spreading malware, etc. Internet Service Providers (ISPs) and email inbox providers (like Gmail, Yahoo Mail, AOL, etc.) rely on SPAM filters, firewalls, and blacklist directories to prevent \"unsolicited\" SPAM emails from entering your inbox. Spam mails are overrunning email inboxes, which significantly slows down internet performance. It is crucial to properly analyze the connections between these spammers and spam because the majority of us tend to provide them with crucial information, such as our contact information. Since the benefactor covers a large percentage of the costs related to spamming, it effectively serves as advertising for the cost of mailing. The study of existing work shows that machine learning and deep learning are frequently employed to effectively identify email spam. This research paper is secondary work in which we have studied, and implemented the various machine learning and deep learning approaches to identify email spam in Python. The four machine learning algorithms—KNN, Navies Bayes, BiLSTM, and Deep CNN—show that they can be utilized effectively to detect spam. Yet the Deep CNN outperforms the other three based on accuracy and the F1 score.","PeriodicalId":266681,"journal":{"name":"2023 International Conference on Disruptive Technologies (ICDT)","volume":"275 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of Machine Learning and Deep Learning Algorithms for the Detection of Email Spam based on Python Implementation\",\"authors\":\"Sahote Tejinder Singh, Madhuri Dinesh Gabhane, C. Mahamuni\",\"doi\":\"10.1109/ICDT57929.2023.10150836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spam is the act of sending unsolicited emails to a large number of users for phishing, spreading malware, etc. Internet Service Providers (ISPs) and email inbox providers (like Gmail, Yahoo Mail, AOL, etc.) rely on SPAM filters, firewalls, and blacklist directories to prevent \\\"unsolicited\\\" SPAM emails from entering your inbox. Spam mails are overrunning email inboxes, which significantly slows down internet performance. It is crucial to properly analyze the connections between these spammers and spam because the majority of us tend to provide them with crucial information, such as our contact information. Since the benefactor covers a large percentage of the costs related to spamming, it effectively serves as advertising for the cost of mailing. The study of existing work shows that machine learning and deep learning are frequently employed to effectively identify email spam. This research paper is secondary work in which we have studied, and implemented the various machine learning and deep learning approaches to identify email spam in Python. The four machine learning algorithms—KNN, Navies Bayes, BiLSTM, and Deep CNN—show that they can be utilized effectively to detect spam. Yet the Deep CNN outperforms the other three based on accuracy and the F1 score.\",\"PeriodicalId\":266681,\"journal\":{\"name\":\"2023 International Conference on Disruptive Technologies (ICDT)\",\"volume\":\"275 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Disruptive Technologies (ICDT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDT57929.2023.10150836\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Disruptive Technologies (ICDT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDT57929.2023.10150836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study of Machine Learning and Deep Learning Algorithms for the Detection of Email Spam based on Python Implementation
Spam is the act of sending unsolicited emails to a large number of users for phishing, spreading malware, etc. Internet Service Providers (ISPs) and email inbox providers (like Gmail, Yahoo Mail, AOL, etc.) rely on SPAM filters, firewalls, and blacklist directories to prevent "unsolicited" SPAM emails from entering your inbox. Spam mails are overrunning email inboxes, which significantly slows down internet performance. It is crucial to properly analyze the connections between these spammers and spam because the majority of us tend to provide them with crucial information, such as our contact information. Since the benefactor covers a large percentage of the costs related to spamming, it effectively serves as advertising for the cost of mailing. The study of existing work shows that machine learning and deep learning are frequently employed to effectively identify email spam. This research paper is secondary work in which we have studied, and implemented the various machine learning and deep learning approaches to identify email spam in Python. The four machine learning algorithms—KNN, Navies Bayes, BiLSTM, and Deep CNN—show that they can be utilized effectively to detect spam. Yet the Deep CNN outperforms the other three based on accuracy and the F1 score.