基于多项朴素贝叶斯的实时性别识别

Diego Vergara, S. Hernández, Felipe Jorquera
{"title":"基于多项朴素贝叶斯的实时性别识别","authors":"Diego Vergara, S. Hernández, Felipe Jorquera","doi":"10.1109/STSIVA.2016.7743331","DOIUrl":null,"url":null,"abstract":"Existing implementations of face recognition systems are created under controlled environments and tested using a limited amount of data. Also, these techniques have a high computational cost which forbids incremental learning that is required in real-time. We propose a gender estimation implementation based on Multinomial Naive Bayes and Local Binary Patterns. The method is tested in a modern age and gender recognition dataset with realistic examples. In order to get state-of-the-art results, Adaboost is also proposed and tested.","PeriodicalId":373420,"journal":{"name":"2016 XXI Symposium on Signal Processing, Images and Artificial Vision (STSIVA)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Multinomial Naive Bayes for real-time gender recognition\",\"authors\":\"Diego Vergara, S. Hernández, Felipe Jorquera\",\"doi\":\"10.1109/STSIVA.2016.7743331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing implementations of face recognition systems are created under controlled environments and tested using a limited amount of data. Also, these techniques have a high computational cost which forbids incremental learning that is required in real-time. We propose a gender estimation implementation based on Multinomial Naive Bayes and Local Binary Patterns. The method is tested in a modern age and gender recognition dataset with realistic examples. In order to get state-of-the-art results, Adaboost is also proposed and tested.\",\"PeriodicalId\":373420,\"journal\":{\"name\":\"2016 XXI Symposium on Signal Processing, Images and Artificial Vision (STSIVA)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 XXI Symposium on Signal Processing, Images and Artificial Vision (STSIVA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STSIVA.2016.7743331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 XXI Symposium on Signal Processing, Images and Artificial Vision (STSIVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STSIVA.2016.7743331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

人脸识别系统的现有实现是在受控环境下创建的,并使用有限的数据进行测试。此外,这些技术有很高的计算成本,这不利于实时所需的增量学习。我们提出了一种基于多项朴素贝叶斯和局部二值模式的性别估计方法。该方法在一个现代年龄和性别识别数据集中进行了测试。为了获得最先进的结果,Adaboost也被提出和测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multinomial Naive Bayes for real-time gender recognition
Existing implementations of face recognition systems are created under controlled environments and tested using a limited amount of data. Also, these techniques have a high computational cost which forbids incremental learning that is required in real-time. We propose a gender estimation implementation based on Multinomial Naive Bayes and Local Binary Patterns. The method is tested in a modern age and gender recognition dataset with realistic examples. In order to get state-of-the-art results, Adaboost is also proposed and tested.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信