{"title":"基于强化学习的多轿厢电梯群控分配策略选择","authors":"Taichi Uraji, Kenichi Takahashi","doi":"10.1504/IJKWI.2012.050285","DOIUrl":null,"url":null,"abstract":"This paper discusses the group control of elevators in the web monitoring system for improving efficiency and saving energy; an efficient control method for multi-car elevator using reinforcement learning is proposed. In the method, the control agent selects the best strategy among three strategies, namely distance-strategy, passenger-strategy, and zone-strategy, according to traffic flow. The control agent takes the number of total passengers and the distance from the departure floor to the destination floor of a call into account. Through experiments, the performance of the proposed method is shown; the average service time of the proposed method is compared with the average service time for the cases where the car assignment is made by each of the three strategies.","PeriodicalId":113936,"journal":{"name":"Int. J. Knowl. Web Intell.","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Assignment strategy selection for multi-car elevator group control using reinforcement learning\",\"authors\":\"Taichi Uraji, Kenichi Takahashi\",\"doi\":\"10.1504/IJKWI.2012.050285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the group control of elevators in the web monitoring system for improving efficiency and saving energy; an efficient control method for multi-car elevator using reinforcement learning is proposed. In the method, the control agent selects the best strategy among three strategies, namely distance-strategy, passenger-strategy, and zone-strategy, according to traffic flow. The control agent takes the number of total passengers and the distance from the departure floor to the destination floor of a call into account. Through experiments, the performance of the proposed method is shown; the average service time of the proposed method is compared with the average service time for the cases where the car assignment is made by each of the three strategies.\",\"PeriodicalId\":113936,\"journal\":{\"name\":\"Int. J. Knowl. Web Intell.\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Knowl. Web Intell.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJKWI.2012.050285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Web Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJKWI.2012.050285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Assignment strategy selection for multi-car elevator group control using reinforcement learning
This paper discusses the group control of elevators in the web monitoring system for improving efficiency and saving energy; an efficient control method for multi-car elevator using reinforcement learning is proposed. In the method, the control agent selects the best strategy among three strategies, namely distance-strategy, passenger-strategy, and zone-strategy, according to traffic flow. The control agent takes the number of total passengers and the distance from the departure floor to the destination floor of a call into account. Through experiments, the performance of the proposed method is shown; the average service time of the proposed method is compared with the average service time for the cases where the car assignment is made by each of the three strategies.