机器学习设计宫颈癌患者识别

M. Sangeetha, G. Sasikala, K. Anitha, S. Ragavendiran, K. R. S. Kumar, M. Deivakani
{"title":"机器学习设计宫颈癌患者识别","authors":"M. Sangeetha, G. Sasikala, K. Anitha, S. Ragavendiran, K. R. S. Kumar, M. Deivakani","doi":"10.1109/ICECONF57129.2023.10083718","DOIUrl":null,"url":null,"abstract":"In this paper, we develop an automatic diagnosis model that aims to screen and detect the presence of cervical cancer in women patients. The diagnosis model consists of a series of stages that involves pre-processing, feature extraction and classification of cancer using bees swarm optimization (BSO). The BSO helps to classify the instances from the extracted features in an effective way that does not fall into premature convergence. The fully grown solution provides effective classification of images from the pre-defined medical datasets. The simulation is conducted on python in a high-end computing system to test the efficacy of BSO in classifying the cervical cancer. The validation shows an increasing precision of classifying the instances than other state-of-art methods.","PeriodicalId":436733,"journal":{"name":"2023 International Conference on Artificial Intelligence and Knowledge Discovery in Concurrent Engineering (ICECONF)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Designed identification on cervical cancers in patient\",\"authors\":\"M. Sangeetha, G. Sasikala, K. Anitha, S. Ragavendiran, K. R. S. Kumar, M. Deivakani\",\"doi\":\"10.1109/ICECONF57129.2023.10083718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we develop an automatic diagnosis model that aims to screen and detect the presence of cervical cancer in women patients. The diagnosis model consists of a series of stages that involves pre-processing, feature extraction and classification of cancer using bees swarm optimization (BSO). The BSO helps to classify the instances from the extracted features in an effective way that does not fall into premature convergence. The fully grown solution provides effective classification of images from the pre-defined medical datasets. The simulation is conducted on python in a high-end computing system to test the efficacy of BSO in classifying the cervical cancer. The validation shows an increasing precision of classifying the instances than other state-of-art methods.\",\"PeriodicalId\":436733,\"journal\":{\"name\":\"2023 International Conference on Artificial Intelligence and Knowledge Discovery in Concurrent Engineering (ICECONF)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Artificial Intelligence and Knowledge Discovery in Concurrent Engineering (ICECONF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECONF57129.2023.10083718\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Artificial Intelligence and Knowledge Discovery in Concurrent Engineering (ICECONF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECONF57129.2023.10083718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们开发了一个自动诊断模型,旨在筛查和检测女性患者宫颈癌的存在。该诊断模型包括预处理、特征提取和使用蜂群优化(BSO)对癌症进行分类等一系列阶段。BSO有助于以一种有效的方式从提取的特征中分类实例,而不会陷入过早收敛。完全成熟的解决方案提供了有效的分类图像从预定义的医疗数据集。在高端计算系统中对python进行了仿真,以测试BSO对宫颈癌的分类效果。验证表明,与其他最先进的方法相比,实例分类的精度有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning Designed identification on cervical cancers in patient
In this paper, we develop an automatic diagnosis model that aims to screen and detect the presence of cervical cancer in women patients. The diagnosis model consists of a series of stages that involves pre-processing, feature extraction and classification of cancer using bees swarm optimization (BSO). The BSO helps to classify the instances from the extracted features in an effective way that does not fall into premature convergence. The fully grown solution provides effective classification of images from the pre-defined medical datasets. The simulation is conducted on python in a high-end computing system to test the efficacy of BSO in classifying the cervical cancer. The validation shows an increasing precision of classifying the instances than other state-of-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信