应用PHQ-4被动诊断抑郁和焦虑

Fionn Delahunty, R. Johansson, Mihael Arcan
{"title":"应用PHQ-4被动诊断抑郁和焦虑","authors":"Fionn Delahunty, R. Johansson, Mihael Arcan","doi":"10.18653/v1/W19-3205","DOIUrl":null,"url":null,"abstract":"Depression and anxiety are the two most prevalent mental health disorders worldwide, impacting the lives of millions of people each year. In this work, we develop and evaluate a multilabel, multidimensional deep neural network designed to predict PHQ-4 scores based on individuals written text. Our system outperforms random baseline metrics and provides a novel approach to how we can predict psychometric scores from written text. Additionally, we explore how this architecture can be applied to analyse social media data.","PeriodicalId":265570,"journal":{"name":"Proceedings of the Fourth Social Media Mining for Health Applications (#SMM4H) Workshop & Shared Task","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Passive Diagnosis Incorporating the PHQ-4 for Depression and Anxiety\",\"authors\":\"Fionn Delahunty, R. Johansson, Mihael Arcan\",\"doi\":\"10.18653/v1/W19-3205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Depression and anxiety are the two most prevalent mental health disorders worldwide, impacting the lives of millions of people each year. In this work, we develop and evaluate a multilabel, multidimensional deep neural network designed to predict PHQ-4 scores based on individuals written text. Our system outperforms random baseline metrics and provides a novel approach to how we can predict psychometric scores from written text. Additionally, we explore how this architecture can be applied to analyse social media data.\",\"PeriodicalId\":265570,\"journal\":{\"name\":\"Proceedings of the Fourth Social Media Mining for Health Applications (#SMM4H) Workshop & Shared Task\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fourth Social Media Mining for Health Applications (#SMM4H) Workshop & Shared Task\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W19-3205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth Social Media Mining for Health Applications (#SMM4H) Workshop & Shared Task","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-3205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

抑郁和焦虑是世界上最普遍的两种精神健康障碍,每年影响着数百万人的生活。在这项工作中,我们开发并评估了一个多标签、多维深度神经网络,旨在根据个人书面文本预测PHQ-4分数。我们的系统优于随机基线指标,并为我们如何从书面文本预测心理测试分数提供了一种新颖的方法。此外,我们还探讨了如何将这种架构应用于分析社交媒体数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Passive Diagnosis Incorporating the PHQ-4 for Depression and Anxiety
Depression and anxiety are the two most prevalent mental health disorders worldwide, impacting the lives of millions of people each year. In this work, we develop and evaluate a multilabel, multidimensional deep neural network designed to predict PHQ-4 scores based on individuals written text. Our system outperforms random baseline metrics and provides a novel approach to how we can predict psychometric scores from written text. Additionally, we explore how this architecture can be applied to analyse social media data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信