{"title":"最小化实时嵌入式应用中的堆栈和通信内存使用","authors":"Haibo Zeng, M. Natale, Qi Zhu","doi":"10.1145/2632160","DOIUrl":null,"url":null,"abstract":"In the development of real-time embedded applications, especially those on systems-on-chip, an efficient use of RAM memory is as important as the effective scheduling of the computation resources. The protection of communication and state variables accessed by concurrent tasks must provide real-time schedulability guarantees while using the least amount of memory. Several schemes, including preemption thresholds, have been developed to improve schedulability and save stack space by selectively disabling preemption. However, the design synthesis problem is still open. In this article, we target the assignment of the scheduling parameters to minimize memory usage for systems of practical interest, including designs compliant with automotive standards. We propose algorithms either proven optimal or shown to improve on randomized optimization methods like simulated annealing.","PeriodicalId":183677,"journal":{"name":"ACM Trans. Embed. Comput. Syst.","volume":"145 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Minimizing Stack and Communication Memory Usage in Real-Time Embedded Applications\",\"authors\":\"Haibo Zeng, M. Natale, Qi Zhu\",\"doi\":\"10.1145/2632160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the development of real-time embedded applications, especially those on systems-on-chip, an efficient use of RAM memory is as important as the effective scheduling of the computation resources. The protection of communication and state variables accessed by concurrent tasks must provide real-time schedulability guarantees while using the least amount of memory. Several schemes, including preemption thresholds, have been developed to improve schedulability and save stack space by selectively disabling preemption. However, the design synthesis problem is still open. In this article, we target the assignment of the scheduling parameters to minimize memory usage for systems of practical interest, including designs compliant with automotive standards. We propose algorithms either proven optimal or shown to improve on randomized optimization methods like simulated annealing.\",\"PeriodicalId\":183677,\"journal\":{\"name\":\"ACM Trans. Embed. Comput. Syst.\",\"volume\":\"145 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Trans. Embed. Comput. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2632160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Embed. Comput. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2632160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Minimizing Stack and Communication Memory Usage in Real-Time Embedded Applications
In the development of real-time embedded applications, especially those on systems-on-chip, an efficient use of RAM memory is as important as the effective scheduling of the computation resources. The protection of communication and state variables accessed by concurrent tasks must provide real-time schedulability guarantees while using the least amount of memory. Several schemes, including preemption thresholds, have been developed to improve schedulability and save stack space by selectively disabling preemption. However, the design synthesis problem is still open. In this article, we target the assignment of the scheduling parameters to minimize memory usage for systems of practical interest, including designs compliant with automotive standards. We propose algorithms either proven optimal or shown to improve on randomized optimization methods like simulated annealing.