基于电磁建模和神经网络的网络化多目标检测

T.X. Wu, Shanhu Wan
{"title":"基于电磁建模和神经网络的网络化多目标检测","authors":"T.X. Wu, Shanhu Wan","doi":"10.1109/NAECON.2008.4806530","DOIUrl":null,"url":null,"abstract":"Multi-target detection is crucial in modern warfare. It is challenging to distinguish radar returns of multiple, separate targets from those of multiple reflection points on a single target. Methods developed so far use straightforward discrimination, which is computationally complex. In this paper, we propose ideas to detect multi-targets by using electromagnetic modeling and neural networks (NNs). Preliminary result for missile identification through NN is presented for indicating the efficiency of NN for multi-target detection.","PeriodicalId":254758,"journal":{"name":"2008 IEEE National Aerospace and Electronics Conference","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Networked Multi-target Detection Using Electromagnetic Modeling and Neural Network\",\"authors\":\"T.X. Wu, Shanhu Wan\",\"doi\":\"10.1109/NAECON.2008.4806530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-target detection is crucial in modern warfare. It is challenging to distinguish radar returns of multiple, separate targets from those of multiple reflection points on a single target. Methods developed so far use straightforward discrimination, which is computationally complex. In this paper, we propose ideas to detect multi-targets by using electromagnetic modeling and neural networks (NNs). Preliminary result for missile identification through NN is presented for indicating the efficiency of NN for multi-target detection.\",\"PeriodicalId\":254758,\"journal\":{\"name\":\"2008 IEEE National Aerospace and Electronics Conference\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE National Aerospace and Electronics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAECON.2008.4806530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE National Aerospace and Electronics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2008.4806530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多目标探测在现代战争中至关重要。区分多个独立目标的雷达回波与单个目标上多个反射点的回波具有挑战性。迄今为止开发的方法使用直接判别,这是计算复杂的。在本文中,我们提出了利用电磁建模和神经网络(nn)来检测多目标的思想。给出了利用神经网络进行导弹识别的初步结果,表明了神经网络在多目标检测中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Networked Multi-target Detection Using Electromagnetic Modeling and Neural Network
Multi-target detection is crucial in modern warfare. It is challenging to distinguish radar returns of multiple, separate targets from those of multiple reflection points on a single target. Methods developed so far use straightforward discrimination, which is computationally complex. In this paper, we propose ideas to detect multi-targets by using electromagnetic modeling and neural networks (NNs). Preliminary result for missile identification through NN is presented for indicating the efficiency of NN for multi-target detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信