最小命中集问题t约束变分的一种进化算法

V. Cutello, E. Mastriani, F. Pappalardo
{"title":"最小命中集问题t约束变分的一种进化算法","authors":"V. Cutello, E. Mastriani, F. Pappalardo","doi":"10.1109/CEC.2002.1006262","DOIUrl":null,"url":null,"abstract":"We propose an evolutionary algorithm to approximate optimal solutions to instances of the T-constrained variation of the Minimum Hitting Set Problem. The base problem, Minimum Hitting Set, is a well known /spl Nscr//spl Pscr/-complete problem. Our genetic algorithm will use the idea of viruses which infect chromosomes and change one of their bits. A special dynamic fitness function has been also used to improve overall performance.","PeriodicalId":184547,"journal":{"name":"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An evolutionary algorithm for the T-constrained variation of Minimum Hitting Set problem\",\"authors\":\"V. Cutello, E. Mastriani, F. Pappalardo\",\"doi\":\"10.1109/CEC.2002.1006262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an evolutionary algorithm to approximate optimal solutions to instances of the T-constrained variation of the Minimum Hitting Set Problem. The base problem, Minimum Hitting Set, is a well known /spl Nscr//spl Pscr/-complete problem. Our genetic algorithm will use the idea of viruses which infect chromosomes and change one of their bits. A special dynamic fitness function has been also used to improve overall performance.\",\"PeriodicalId\":184547,\"journal\":{\"name\":\"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2002.1006262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2002.1006262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们提出了一种进化算法来逼近最小命中集问题的t约束变异实例的最优解。基本问题,最小命中集,是一个众所周知的/spl Nscr//spl Pscr/-完全问题。我们的遗传算法将使用病毒的思想,病毒感染染色体并改变其中的一个比特。一个特殊的动态适应度函数也被用来提高整体性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An evolutionary algorithm for the T-constrained variation of Minimum Hitting Set problem
We propose an evolutionary algorithm to approximate optimal solutions to instances of the T-constrained variation of the Minimum Hitting Set Problem. The base problem, Minimum Hitting Set, is a well known /spl Nscr//spl Pscr/-complete problem. Our genetic algorithm will use the idea of viruses which infect chromosomes and change one of their bits. A special dynamic fitness function has been also used to improve overall performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信