利用线谱频率从语音中识别情绪

E. Bozkurt, E. Erzin, Ç. Erdem, A. Erdem
{"title":"利用线谱频率从语音中识别情绪","authors":"E. Bozkurt, E. Erzin, Ç. Erdem, A. Erdem","doi":"10.1109/ICPR.2010.903","DOIUrl":null,"url":null,"abstract":"We propose the use of the line spectral frequency (LSF) features for emotion recognition from speech, which have not been been previously employed for emotion recognition to the best of our knowledge. Spectral features such as mel-scaled cepstral coefficients have already been successfully used for the parameterization of speech signals for emotion recognition. The LSF features also offer a spectral representation for speech, moreover they carry intrinsic information on the formant structure as well, which are related to the emotional state of the speaker [4]. We use the Gaussian mixture model (GMM) classifier architecture, that captures the static color of the spectral features. Experimental studies performed over the Berlin Emotional Speech Database and the FAU Aibo Emotion Corpus demonstrate that decision fusion configurations with LSF features bring a consistent improvement over the MFCC based emotion classification rates.","PeriodicalId":309591,"journal":{"name":"2010 20th International Conference on Pattern Recognition","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Use of Line Spectral Frequencies for Emotion Recognition from Speech\",\"authors\":\"E. Bozkurt, E. Erzin, Ç. Erdem, A. Erdem\",\"doi\":\"10.1109/ICPR.2010.903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose the use of the line spectral frequency (LSF) features for emotion recognition from speech, which have not been been previously employed for emotion recognition to the best of our knowledge. Spectral features such as mel-scaled cepstral coefficients have already been successfully used for the parameterization of speech signals for emotion recognition. The LSF features also offer a spectral representation for speech, moreover they carry intrinsic information on the formant structure as well, which are related to the emotional state of the speaker [4]. We use the Gaussian mixture model (GMM) classifier architecture, that captures the static color of the spectral features. Experimental studies performed over the Berlin Emotional Speech Database and the FAU Aibo Emotion Corpus demonstrate that decision fusion configurations with LSF features bring a consistent improvement over the MFCC based emotion classification rates.\",\"PeriodicalId\":309591,\"journal\":{\"name\":\"2010 20th International Conference on Pattern Recognition\",\"volume\":\"132 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 20th International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2010.903\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 20th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2010.903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

我们建议使用线谱频率(LSF)特征进行语音情感识别,据我们所知,这些特征以前还没有被用于情感识别。频谱特征,如mel尺度倒谱系数,已经成功地用于参数化语音信号的情感识别。LSF特征也为语音提供了谱表示,而且它们还携带着共振峰结构的内在信息,这些信息与说话者的情绪状态有关[4]。我们使用高斯混合模型(GMM)分类器架构,捕获光谱特征的静态颜色。在Berlin情绪语音数据库和FAU Aibo情绪语料库上进行的实验研究表明,与基于MFCC的情绪分类率相比,具有LSF特征的决策融合配置带来了一致的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Use of Line Spectral Frequencies for Emotion Recognition from Speech
We propose the use of the line spectral frequency (LSF) features for emotion recognition from speech, which have not been been previously employed for emotion recognition to the best of our knowledge. Spectral features such as mel-scaled cepstral coefficients have already been successfully used for the parameterization of speech signals for emotion recognition. The LSF features also offer a spectral representation for speech, moreover they carry intrinsic information on the formant structure as well, which are related to the emotional state of the speaker [4]. We use the Gaussian mixture model (GMM) classifier architecture, that captures the static color of the spectral features. Experimental studies performed over the Berlin Emotional Speech Database and the FAU Aibo Emotion Corpus demonstrate that decision fusion configurations with LSF features bring a consistent improvement over the MFCC based emotion classification rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信