{"title":"基于尾态指数分布的纳米晶硅薄膜晶体管漏极电流模型","authors":"P. Sharma, N. Gupta","doi":"10.1109/IADCC.2013.6514459","DOIUrl":null,"url":null,"abstract":"In this paper we have modeled the drain current based on the exponential distribution of tail states for nanocrystalline silicon thin film transistor (nc-Si TFT). The degradation of mobility due to the presence of acoustic phonons and interface roughness are taken into account. The model thus developed has been simulated for two different aspect ratios (W/L= 400 μm / 20 μm and W/L = 400 μm / 8 μm), the shape of the curves obtained are similar to the experimental ones validating the developed model.","PeriodicalId":325901,"journal":{"name":"2013 3rd IEEE International Advance Computing Conference (IACC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model for drain current based on the exponential distribution of tail states for nanocrystalline silicon thin film transistor\",\"authors\":\"P. Sharma, N. Gupta\",\"doi\":\"10.1109/IADCC.2013.6514459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we have modeled the drain current based on the exponential distribution of tail states for nanocrystalline silicon thin film transistor (nc-Si TFT). The degradation of mobility due to the presence of acoustic phonons and interface roughness are taken into account. The model thus developed has been simulated for two different aspect ratios (W/L= 400 μm / 20 μm and W/L = 400 μm / 8 μm), the shape of the curves obtained are similar to the experimental ones validating the developed model.\",\"PeriodicalId\":325901,\"journal\":{\"name\":\"2013 3rd IEEE International Advance Computing Conference (IACC)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 3rd IEEE International Advance Computing Conference (IACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IADCC.2013.6514459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 3rd IEEE International Advance Computing Conference (IACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IADCC.2013.6514459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Model for drain current based on the exponential distribution of tail states for nanocrystalline silicon thin film transistor
In this paper we have modeled the drain current based on the exponential distribution of tail states for nanocrystalline silicon thin film transistor (nc-Si TFT). The degradation of mobility due to the presence of acoustic phonons and interface roughness are taken into account. The model thus developed has been simulated for two different aspect ratios (W/L= 400 μm / 20 μm and W/L = 400 μm / 8 μm), the shape of the curves obtained are similar to the experimental ones validating the developed model.