{"title":"一个算子映射uL∞到BMOu的充分条件","authors":"Sakin Demir","doi":"10.17654/0975291922002","DOIUrl":null,"url":null,"abstract":"Let $T$ be an operator and suppose that there exists a positive constant $C$ such that $$\\left(\\int_I|Tf(x)|^q\\, dx\\right)^{1/q}\\leq C\\left(\\int_I|f(x)|^q\\, dx\\right)^{1/q}$$ for every $q$ which is near enough to $1$ and for every interval $I$ in $\\mathbb{R}$ and $f\\in L^{\\infty}(\\mathbb{R})$. Then we show that $T$ maps $uL^{\\infty}$ to ${\\rm{BMO}}_u$.","PeriodicalId":448205,"journal":{"name":"International Journal of Functional Analysis, Operator Theory and Applications","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A SUFFICIENT CONDITION FOR AN OPERATOR TO MAP uL∞ TO BMOu\",\"authors\":\"Sakin Demir\",\"doi\":\"10.17654/0975291922002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $T$ be an operator and suppose that there exists a positive constant $C$ such that $$\\\\left(\\\\int_I|Tf(x)|^q\\\\, dx\\\\right)^{1/q}\\\\leq C\\\\left(\\\\int_I|f(x)|^q\\\\, dx\\\\right)^{1/q}$$ for every $q$ which is near enough to $1$ and for every interval $I$ in $\\\\mathbb{R}$ and $f\\\\in L^{\\\\infty}(\\\\mathbb{R})$. Then we show that $T$ maps $uL^{\\\\infty}$ to ${\\\\rm{BMO}}_u$.\",\"PeriodicalId\":448205,\"journal\":{\"name\":\"International Journal of Functional Analysis, Operator Theory and Applications\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Functional Analysis, Operator Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17654/0975291922002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Functional Analysis, Operator Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17654/0975291922002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A SUFFICIENT CONDITION FOR AN OPERATOR TO MAP uL∞ TO BMOu
Let $T$ be an operator and suppose that there exists a positive constant $C$ such that $$\left(\int_I|Tf(x)|^q\, dx\right)^{1/q}\leq C\left(\int_I|f(x)|^q\, dx\right)^{1/q}$$ for every $q$ which is near enough to $1$ and for every interval $I$ in $\mathbb{R}$ and $f\in L^{\infty}(\mathbb{R})$. Then we show that $T$ maps $uL^{\infty}$ to ${\rm{BMO}}_u$.