Michael A. Vedomske, M. Gerber, Donald E. Brown, J. Harrison
{"title":"使用医院计费数据的可扩展和本地适用的治疗变化措施","authors":"Michael A. Vedomske, M. Gerber, Donald E. Brown, J. Harrison","doi":"10.1109/ICMLA.2013.159","DOIUrl":null,"url":null,"abstract":"Care variation studies often use large amounts of data but approaches developed for such research are either scalable but not locally applicable or locally applicable but not scalable. We present a method that is scalable and locally applicable while being statistically significant. Using a population of patients diagnosed with both congestive heart failure and myocardial infarction, we developed and tested measures of care variation on data derived from hospital billing records. Our metrics yielded statistically significant results. Computing time for the method was found to increase linearly allowing for the desired scalability. In the future, our care variation metrics be used to gain insight into local conditions that correlate with outcomes of interest like visit charges or morbidity rates.","PeriodicalId":168867,"journal":{"name":"2013 12th International Conference on Machine Learning and Applications","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable and Locally Applicable Measures of Treatment Variation That Use Hospital Billing Data\",\"authors\":\"Michael A. Vedomske, M. Gerber, Donald E. Brown, J. Harrison\",\"doi\":\"10.1109/ICMLA.2013.159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Care variation studies often use large amounts of data but approaches developed for such research are either scalable but not locally applicable or locally applicable but not scalable. We present a method that is scalable and locally applicable while being statistically significant. Using a population of patients diagnosed with both congestive heart failure and myocardial infarction, we developed and tested measures of care variation on data derived from hospital billing records. Our metrics yielded statistically significant results. Computing time for the method was found to increase linearly allowing for the desired scalability. In the future, our care variation metrics be used to gain insight into local conditions that correlate with outcomes of interest like visit charges or morbidity rates.\",\"PeriodicalId\":168867,\"journal\":{\"name\":\"2013 12th International Conference on Machine Learning and Applications\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 12th International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2013.159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 12th International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2013.159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Scalable and Locally Applicable Measures of Treatment Variation That Use Hospital Billing Data
Care variation studies often use large amounts of data but approaches developed for such research are either scalable but not locally applicable or locally applicable but not scalable. We present a method that is scalable and locally applicable while being statistically significant. Using a population of patients diagnosed with both congestive heart failure and myocardial infarction, we developed and tested measures of care variation on data derived from hospital billing records. Our metrics yielded statistically significant results. Computing time for the method was found to increase linearly allowing for the desired scalability. In the future, our care variation metrics be used to gain insight into local conditions that correlate with outcomes of interest like visit charges or morbidity rates.