指挥与控制阿拉伯语语音识别系统声学模型的开发

M. Nofal, E. Abdel Reheem, H. El Henawy, N. Abdel Kader
{"title":"指挥与控制阿拉伯语语音识别系统声学模型的开发","authors":"M. Nofal, E. Abdel Reheem, H. El Henawy, N. Abdel Kader","doi":"10.1109/ICEEC.2004.1374575","DOIUrl":null,"url":null,"abstract":"The paper presents an acoustic training system for building acoustic models for a medium vocabulary speaker independent continuous speech recognition system. A speech database is constructed to train the acoustic models. The acoustic models are constructed, trained. A test set database is constructed to test the accuracy of the acoustic models, also 4 language models of two main types: bigram and context free grammar were built and used in tests. Our results show a 5.26 YO and 2.72 % word error rate for 1340 and 306 words bigram based language model respectively. Our results show also 0.19 % and 0.99% for 1340 and 306 words context free grammar based language models respectively.","PeriodicalId":180043,"journal":{"name":"International Conference on Electrical, Electronic and Computer Engineering, 2004. ICEEC '04.","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"The development of acoustic models for command and control arabic speech recognition system\",\"authors\":\"M. Nofal, E. Abdel Reheem, H. El Henawy, N. Abdel Kader\",\"doi\":\"10.1109/ICEEC.2004.1374575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents an acoustic training system for building acoustic models for a medium vocabulary speaker independent continuous speech recognition system. A speech database is constructed to train the acoustic models. The acoustic models are constructed, trained. A test set database is constructed to test the accuracy of the acoustic models, also 4 language models of two main types: bigram and context free grammar were built and used in tests. Our results show a 5.26 YO and 2.72 % word error rate for 1340 and 306 words bigram based language model respectively. Our results show also 0.19 % and 0.99% for 1340 and 306 words context free grammar based language models respectively.\",\"PeriodicalId\":180043,\"journal\":{\"name\":\"International Conference on Electrical, Electronic and Computer Engineering, 2004. ICEEC '04.\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Electrical, Electronic and Computer Engineering, 2004. ICEEC '04.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEC.2004.1374575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Electrical, Electronic and Computer Engineering, 2004. ICEEC '04.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEC.2004.1374575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种声学训练系统,用于建立中等词汇量独立于说话人的连续语音识别系统的声学模型。通过构建语音数据库来训练声学模型。声学模型被构建和训练。建立了一个测试集数据库来测试声学模型的准确性,并建立了双语法和无上下文语法两种主要类型的4个语言模型并用于测试。结果表明,基于1340个单词和306个单词的二元图语言模型的错误率分别为5.26%和2.72%。我们的结果表明,基于上下文无关语法的1340个单词和306个单词的语言模型分别为0.19%和0.99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The development of acoustic models for command and control arabic speech recognition system
The paper presents an acoustic training system for building acoustic models for a medium vocabulary speaker independent continuous speech recognition system. A speech database is constructed to train the acoustic models. The acoustic models are constructed, trained. A test set database is constructed to test the accuracy of the acoustic models, also 4 language models of two main types: bigram and context free grammar were built and used in tests. Our results show a 5.26 YO and 2.72 % word error rate for 1340 and 306 words bigram based language model respectively. Our results show also 0.19 % and 0.99% for 1340 and 306 words context free grammar based language models respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信