基于低秩双随机矩阵分解的高光谱数据波段选择

Jiming Li
{"title":"基于低秩双随机矩阵分解的高光谱数据波段选择","authors":"Jiming Li","doi":"10.1109/IGARSS.2016.7729002","DOIUrl":null,"url":null,"abstract":"In this article, a clustering-based band selection method is proposed to tackle the dimension reduction problem of hyperspectral data. The method is essentially based on low-rank doubly stochastic matrix decomposition, which is more stable than current low-rank approximation clustering methods. Experimental results show that the selected band subsets perform well in hyperspectral data classification problems.","PeriodicalId":179622,"journal":{"name":"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Band selection of hyperspectral data with low-rank doubly stochastic matrix decomposition\",\"authors\":\"Jiming Li\",\"doi\":\"10.1109/IGARSS.2016.7729002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, a clustering-based band selection method is proposed to tackle the dimension reduction problem of hyperspectral data. The method is essentially based on low-rank doubly stochastic matrix decomposition, which is more stable than current low-rank approximation clustering methods. Experimental results show that the selected band subsets perform well in hyperspectral data classification problems.\",\"PeriodicalId\":179622,\"journal\":{\"name\":\"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2016.7729002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2016.7729002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对高光谱数据的降维问题,提出了一种基于聚类的波段选择方法。该方法本质上是基于低秩双随机矩阵分解,比现有的低秩近似聚类方法更稳定。实验结果表明,所选择的波段子集在高光谱数据分类问题中表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Band selection of hyperspectral data with low-rank doubly stochastic matrix decomposition
In this article, a clustering-based band selection method is proposed to tackle the dimension reduction problem of hyperspectral data. The method is essentially based on low-rank doubly stochastic matrix decomposition, which is more stable than current low-rank approximation clustering methods. Experimental results show that the selected band subsets perform well in hyperspectral data classification problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信