CBOS:连续的句子包,用于学习句子嵌入

Ye Yuan, Yue Zhang
{"title":"CBOS:连续的句子包,用于学习句子嵌入","authors":"Ye Yuan, Yue Zhang","doi":"10.1109/IALP.2017.8300558","DOIUrl":null,"url":null,"abstract":"There has been recent work learning distributed sentence representations, which utilise neighbouring sentences as context for learning the embedding of a sentence. The setting is reminiscent of training word embeddings, yet no work has reported a baseline using the same training objective as learning word vectors. We fill this gap by empirically investigating the use of a Continuous Bag-of-Word (CBOW) objective, predicting the current sentence using its context sentences. We name this method a Continuous Bag-of-Sentences (CBOS) method. Results on standard benchmark show that CBOS is a highly competitive baseline for training sentence embeddings, outperforming most existing methods for text similarity measurement.","PeriodicalId":183586,"journal":{"name":"2017 International Conference on Asian Language Processing (IALP)","volume":"198 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"CBOS: Continuos bag of sentences for learning sentence embeddings\",\"authors\":\"Ye Yuan, Yue Zhang\",\"doi\":\"10.1109/IALP.2017.8300558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There has been recent work learning distributed sentence representations, which utilise neighbouring sentences as context for learning the embedding of a sentence. The setting is reminiscent of training word embeddings, yet no work has reported a baseline using the same training objective as learning word vectors. We fill this gap by empirically investigating the use of a Continuous Bag-of-Word (CBOW) objective, predicting the current sentence using its context sentences. We name this method a Continuous Bag-of-Sentences (CBOS) method. Results on standard benchmark show that CBOS is a highly competitive baseline for training sentence embeddings, outperforming most existing methods for text similarity measurement.\",\"PeriodicalId\":183586,\"journal\":{\"name\":\"2017 International Conference on Asian Language Processing (IALP)\",\"volume\":\"198 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Asian Language Processing (IALP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IALP.2017.8300558\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2017.8300558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

最近有一些工作是学习分布式句子表示,它利用邻近的句子作为学习句子嵌入的上下文。这种设置让人想起训练词嵌入,但没有工作报告使用与学习词向量相同的训练目标的基线。我们通过实证调查连续词袋(CBOW)目标的使用来填补这一空白,使用上下文句子来预测当前句子。我们将这种方法命名为连续句袋(CBOS)方法。标准基准测试结果表明,CBOS是训练句子嵌入的一个极具竞争力的基准,优于大多数现有的文本相似度测量方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CBOS: Continuos bag of sentences for learning sentence embeddings
There has been recent work learning distributed sentence representations, which utilise neighbouring sentences as context for learning the embedding of a sentence. The setting is reminiscent of training word embeddings, yet no work has reported a baseline using the same training objective as learning word vectors. We fill this gap by empirically investigating the use of a Continuous Bag-of-Word (CBOW) objective, predicting the current sentence using its context sentences. We name this method a Continuous Bag-of-Sentences (CBOS) method. Results on standard benchmark show that CBOS is a highly competitive baseline for training sentence embeddings, outperforming most existing methods for text similarity measurement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信