基于GAN和对比学习的红外图像生成算法

Hong Liu, Lei Ma
{"title":"基于GAN和对比学习的红外图像生成算法","authors":"Hong Liu, Lei Ma","doi":"10.1109/AICIT55386.2022.9930233","DOIUrl":null,"url":null,"abstract":"For the task of converting dimly lit, low luminance nighttime visible to infrared images, we propose a Contrastive Visible-Infrared Image Translation Network (CVIIT). To better distinguish and translate objects such as pedestrians and vehicles, we introduce an attention module based on class activation map in the generator and discriminator of the Generative Adversarial Network (GAN), which captures richer context information in the images. In addition, we introduce contrastive learning to align the generated images with the visible images in terms of content. Qualitative and quantitative experiments on a publicly available visible-Infrared image pairing dataset (LLVIP) show that the proposed method generates infrared images of significantly higher quality than other state-of-the-art image-to-image translation (I2IT) methods.","PeriodicalId":231070,"journal":{"name":"2022 International Conference on Artificial Intelligence and Computer Information Technology (AICIT)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infrared Image Generation Algorithm Based on GAN and contrastive learning\",\"authors\":\"Hong Liu, Lei Ma\",\"doi\":\"10.1109/AICIT55386.2022.9930233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the task of converting dimly lit, low luminance nighttime visible to infrared images, we propose a Contrastive Visible-Infrared Image Translation Network (CVIIT). To better distinguish and translate objects such as pedestrians and vehicles, we introduce an attention module based on class activation map in the generator and discriminator of the Generative Adversarial Network (GAN), which captures richer context information in the images. In addition, we introduce contrastive learning to align the generated images with the visible images in terms of content. Qualitative and quantitative experiments on a publicly available visible-Infrared image pairing dataset (LLVIP) show that the proposed method generates infrared images of significantly higher quality than other state-of-the-art image-to-image translation (I2IT) methods.\",\"PeriodicalId\":231070,\"journal\":{\"name\":\"2022 International Conference on Artificial Intelligence and Computer Information Technology (AICIT)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Artificial Intelligence and Computer Information Technology (AICIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICIT55386.2022.9930233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Artificial Intelligence and Computer Information Technology (AICIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICIT55386.2022.9930233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了将昏暗、低亮度的夜间可见光图像转换为红外图像,我们提出了一种对比可见光-红外图像转换网络(CVIIT)。为了更好地区分和翻译行人和车辆等物体,我们在生成式对抗网络(GAN)的生成器和判别器中引入了一个基于类激活图的注意力模块,该模块可以捕获图像中更丰富的上下文信息。此外,我们引入了对比学习,将生成的图像与可见图像在内容上对齐。在公开可用的可见光-红外图像配对数据集(LLVIP)上进行的定性和定量实验表明,该方法生成的红外图像质量明显高于其他最先进的图像到图像转换(I2IT)方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infrared Image Generation Algorithm Based on GAN and contrastive learning
For the task of converting dimly lit, low luminance nighttime visible to infrared images, we propose a Contrastive Visible-Infrared Image Translation Network (CVIIT). To better distinguish and translate objects such as pedestrians and vehicles, we introduce an attention module based on class activation map in the generator and discriminator of the Generative Adversarial Network (GAN), which captures richer context information in the images. In addition, we introduce contrastive learning to align the generated images with the visible images in terms of content. Qualitative and quantitative experiments on a publicly available visible-Infrared image pairing dataset (LLVIP) show that the proposed method generates infrared images of significantly higher quality than other state-of-the-art image-to-image translation (I2IT) methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信