自主机器人系统移动行为多目标优化算法比较

D. Behnke, N. Goddemeier, Jens Mollmer, C. Wietfeld
{"title":"自主机器人系统移动行为多目标优化算法比较","authors":"D. Behnke, N. Goddemeier, Jens Mollmer, C. Wietfeld","doi":"10.1109/GLOCOMW.2014.7063638","DOIUrl":null,"url":null,"abstract":"Innovative mobility algorithms for autonomous robots have been developed to address civil applications such as disaster relief in the past. Using sophisticated development methodologies such as combinations of model-based as well as Software- and Hardware-in-the-Loop simulations help to reduce the gap between simulations and real world scenarios. An open issue regarding the mobility is to find the optimal parametrization considering multiple optimization goals. In this research work, we introduce and analyze the Mobility Evaluation and Parameter Optimizer (MobEPO). Multiobjective optimization algorithms are used to find optimal parameter sets. We present the approach and a proof-of-concept evaluation in a common exploration scenario. We compare three suitable optimization algorithms and describe their use for prospective steering algorithm design.","PeriodicalId":354340,"journal":{"name":"2014 IEEE Globecom Workshops (GC Wkshps)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of multiobjective optimization algorithms for mobility behaviors in autonomous robot systems\",\"authors\":\"D. Behnke, N. Goddemeier, Jens Mollmer, C. Wietfeld\",\"doi\":\"10.1109/GLOCOMW.2014.7063638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Innovative mobility algorithms for autonomous robots have been developed to address civil applications such as disaster relief in the past. Using sophisticated development methodologies such as combinations of model-based as well as Software- and Hardware-in-the-Loop simulations help to reduce the gap between simulations and real world scenarios. An open issue regarding the mobility is to find the optimal parametrization considering multiple optimization goals. In this research work, we introduce and analyze the Mobility Evaluation and Parameter Optimizer (MobEPO). Multiobjective optimization algorithms are used to find optimal parameter sets. We present the approach and a proof-of-concept evaluation in a common exploration scenario. We compare three suitable optimization algorithms and describe their use for prospective steering algorithm design.\",\"PeriodicalId\":354340,\"journal\":{\"name\":\"2014 IEEE Globecom Workshops (GC Wkshps)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Globecom Workshops (GC Wkshps)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOCOMW.2014.7063638\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Globecom Workshops (GC Wkshps)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOMW.2014.7063638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

过去,自主机器人的创新移动算法已经被开发出来,用于解决救灾等民用应用。使用复杂的开发方法,如基于模型的模拟以及软件和硬件在环模拟的组合,有助于减少模拟与现实世界场景之间的差距。机动性的一个开放性问题是如何在考虑多个优化目标的情况下找到最优参数。在本研究中,我们介绍并分析了机动性评估与参数优化器(MobEPO)。采用多目标优化算法寻找最优参数集。我们在一个常见的勘探场景中提出了该方法和概念验证评估。我们比较了三种合适的优化算法,并描述了它们在前瞻性转向算法设计中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of multiobjective optimization algorithms for mobility behaviors in autonomous robot systems
Innovative mobility algorithms for autonomous robots have been developed to address civil applications such as disaster relief in the past. Using sophisticated development methodologies such as combinations of model-based as well as Software- and Hardware-in-the-Loop simulations help to reduce the gap between simulations and real world scenarios. An open issue regarding the mobility is to find the optimal parametrization considering multiple optimization goals. In this research work, we introduce and analyze the Mobility Evaluation and Parameter Optimizer (MobEPO). Multiobjective optimization algorithms are used to find optimal parameter sets. We present the approach and a proof-of-concept evaluation in a common exploration scenario. We compare three suitable optimization algorithms and describe their use for prospective steering algorithm design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信