模型叠加平均法

C. Morana
{"title":"模型叠加平均法","authors":"C. Morana","doi":"10.2139/ssrn.2665704","DOIUrl":null,"url":null,"abstract":"The paper introduces a new Frequentist model averaging estimation procedure, based on a stacked OLS estimator across models, implementable on cross-sectional, panel, as well as time series data. The proposed estimator shows the same optimal properties of the OLS estimator under the usual set of assumptions concerning the population regression model. Relatively to available alternative approaches, it has the advantage of performing model averaging exante in a single step, optimally selecting models’ weight according to the MSE metric, i.e. by minimizing the squared Euclidean distance between actual and predicted value vectors. Moreover, it is straightforward to implement, only requiring the estimation of a single OLS augmented regression. By exploiting exante a broader information set and benefiting of more degrees of freedom, the proposed approach yields more accurate and (relatively) more efficient estimation than available expost methods.","PeriodicalId":415063,"journal":{"name":"University of Milan Bicocca Department of Economics","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Model Averaging by Stacking\",\"authors\":\"C. Morana\",\"doi\":\"10.2139/ssrn.2665704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper introduces a new Frequentist model averaging estimation procedure, based on a stacked OLS estimator across models, implementable on cross-sectional, panel, as well as time series data. The proposed estimator shows the same optimal properties of the OLS estimator under the usual set of assumptions concerning the population regression model. Relatively to available alternative approaches, it has the advantage of performing model averaging exante in a single step, optimally selecting models’ weight according to the MSE metric, i.e. by minimizing the squared Euclidean distance between actual and predicted value vectors. Moreover, it is straightforward to implement, only requiring the estimation of a single OLS augmented regression. By exploiting exante a broader information set and benefiting of more degrees of freedom, the proposed approach yields more accurate and (relatively) more efficient estimation than available expost methods.\",\"PeriodicalId\":415063,\"journal\":{\"name\":\"University of Milan Bicocca Department of Economics\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"University of Milan Bicocca Department of Economics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2665704\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"University of Milan Bicocca Department of Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2665704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文介绍了一种新的Frequentist模型平均估计方法,该方法基于跨模型的堆叠OLS估计器,可在横截面、面板和时间序列数据上实现。在关于总体回归模型的通常假设集下,所提出的估计量显示出与OLS估计量相同的最优性质。相对于现有的替代方法,它的优点是在一个步骤中执行模型平均扩展,根据MSE度量最优地选择模型的权重,即通过最小化实际值向量和预测值向量之间的平方欧几里德距离。此外,它很容易实现,只需要估计单个OLS增广回归。通过利用更广泛的信息集并受益于更多的自由度,所提出的方法比现有的导出方法产生更准确和(相对)更有效的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model Averaging by Stacking
The paper introduces a new Frequentist model averaging estimation procedure, based on a stacked OLS estimator across models, implementable on cross-sectional, panel, as well as time series data. The proposed estimator shows the same optimal properties of the OLS estimator under the usual set of assumptions concerning the population regression model. Relatively to available alternative approaches, it has the advantage of performing model averaging exante in a single step, optimally selecting models’ weight according to the MSE metric, i.e. by minimizing the squared Euclidean distance between actual and predicted value vectors. Moreover, it is straightforward to implement, only requiring the estimation of a single OLS augmented regression. By exploiting exante a broader information set and benefiting of more degrees of freedom, the proposed approach yields more accurate and (relatively) more efficient estimation than available expost methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信