利用机器学习解析太赫兹光谱以获取固有分子信息

Jianglou Huang, Jinsong Liu, Kejia Wang, Zhengang Yang, Xiaming Liu
{"title":"利用机器学习解析太赫兹光谱以获取固有分子信息","authors":"Jianglou Huang, Jinsong Liu, Kejia Wang, Zhengang Yang, Xiaming Liu","doi":"10.1364/isst.2019.jw4a.55","DOIUrl":null,"url":null,"abstract":"Using factor analysis, we develop a method to extract latent vibrational modes of molecules from their terahertz spectra. With this molecular information, we successfully classify 16 molecules, proving that this method is effective.","PeriodicalId":198755,"journal":{"name":"International Photonics and OptoElectronics Meeting 2019 (OFDA, OEDI, ISST, PE, LST, TSA)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Machine Learning to Resolve Terahertz Spectra for Intrinsic Molecular Information\",\"authors\":\"Jianglou Huang, Jinsong Liu, Kejia Wang, Zhengang Yang, Xiaming Liu\",\"doi\":\"10.1364/isst.2019.jw4a.55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using factor analysis, we develop a method to extract latent vibrational modes of molecules from their terahertz spectra. With this molecular information, we successfully classify 16 molecules, proving that this method is effective.\",\"PeriodicalId\":198755,\"journal\":{\"name\":\"International Photonics and OptoElectronics Meeting 2019 (OFDA, OEDI, ISST, PE, LST, TSA)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Photonics and OptoElectronics Meeting 2019 (OFDA, OEDI, ISST, PE, LST, TSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/isst.2019.jw4a.55\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Photonics and OptoElectronics Meeting 2019 (OFDA, OEDI, ISST, PE, LST, TSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/isst.2019.jw4a.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用因子分析,我们开发了一种从分子的太赫兹光谱中提取潜在振动模式的方法。利用这些分子信息,我们成功地对16个分子进行了分类,证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Machine Learning to Resolve Terahertz Spectra for Intrinsic Molecular Information
Using factor analysis, we develop a method to extract latent vibrational modes of molecules from their terahertz spectra. With this molecular information, we successfully classify 16 molecules, proving that this method is effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信