Jianglou Huang, Jinsong Liu, Kejia Wang, Zhengang Yang, Xiaming Liu
{"title":"利用机器学习解析太赫兹光谱以获取固有分子信息","authors":"Jianglou Huang, Jinsong Liu, Kejia Wang, Zhengang Yang, Xiaming Liu","doi":"10.1364/isst.2019.jw4a.55","DOIUrl":null,"url":null,"abstract":"Using factor analysis, we develop a method to extract latent vibrational modes of molecules from their terahertz spectra. With this molecular information, we successfully classify 16 molecules, proving that this method is effective.","PeriodicalId":198755,"journal":{"name":"International Photonics and OptoElectronics Meeting 2019 (OFDA, OEDI, ISST, PE, LST, TSA)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Machine Learning to Resolve Terahertz Spectra for Intrinsic Molecular Information\",\"authors\":\"Jianglou Huang, Jinsong Liu, Kejia Wang, Zhengang Yang, Xiaming Liu\",\"doi\":\"10.1364/isst.2019.jw4a.55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using factor analysis, we develop a method to extract latent vibrational modes of molecules from their terahertz spectra. With this molecular information, we successfully classify 16 molecules, proving that this method is effective.\",\"PeriodicalId\":198755,\"journal\":{\"name\":\"International Photonics and OptoElectronics Meeting 2019 (OFDA, OEDI, ISST, PE, LST, TSA)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Photonics and OptoElectronics Meeting 2019 (OFDA, OEDI, ISST, PE, LST, TSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/isst.2019.jw4a.55\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Photonics and OptoElectronics Meeting 2019 (OFDA, OEDI, ISST, PE, LST, TSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/isst.2019.jw4a.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using Machine Learning to Resolve Terahertz Spectra for Intrinsic Molecular Information
Using factor analysis, we develop a method to extract latent vibrational modes of molecules from their terahertz spectra. With this molecular information, we successfully classify 16 molecules, proving that this method is effective.