先进制造中基于机器学习的原子间势

IF 3.4 Q1 ENGINEERING, MECHANICAL
Wei Yu, Chaoyue Ji, Xuhao Wan, Zhaofu Zhang, John Robertson, Sheng Liu, Yuzheng Guo
{"title":"先进制造中基于机器学习的原子间势","authors":"Wei Yu,&nbsp;Chaoyue Ji,&nbsp;Xuhao Wan,&nbsp;Zhaofu Zhang,&nbsp;John Robertson,&nbsp;Sheng Liu,&nbsp;Yuzheng Guo","doi":"10.1002/msd2.12021","DOIUrl":null,"url":null,"abstract":"<p>This paper summarizes the progress of machine-learning-based interatomic potentials and their applications in advanced manufacturing. Interatomic potential is essential for classical molecular dynamics. The advancements made in machine learning (ML) have enabled the development of fast interatomic potential with ab initio accuracy. The accelerated atomic simulation can greatly transform the design principle of manufacturing technology. The most widely used supervised and unsupervised ML methods are summarized and compared. Then, the emerging interatomic models based on ML are discussed: Gaussian approximation potential, spectral neighbor analysis potential, deep potential molecular dynamics, SCHNET, hierarchically interacting particle neural network, and fast learning of atomistic rare events.</p>","PeriodicalId":60486,"journal":{"name":"国际机械系统动力学学报(英文)","volume":"1 2","pages":"159-172"},"PeriodicalIF":3.4000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/msd2.12021","citationCount":"2","resultStr":"{\"title\":\"Machine-learning-based interatomic potentials for advanced manufacturing\",\"authors\":\"Wei Yu,&nbsp;Chaoyue Ji,&nbsp;Xuhao Wan,&nbsp;Zhaofu Zhang,&nbsp;John Robertson,&nbsp;Sheng Liu,&nbsp;Yuzheng Guo\",\"doi\":\"10.1002/msd2.12021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper summarizes the progress of machine-learning-based interatomic potentials and their applications in advanced manufacturing. Interatomic potential is essential for classical molecular dynamics. The advancements made in machine learning (ML) have enabled the development of fast interatomic potential with ab initio accuracy. The accelerated atomic simulation can greatly transform the design principle of manufacturing technology. The most widely used supervised and unsupervised ML methods are summarized and compared. Then, the emerging interatomic models based on ML are discussed: Gaussian approximation potential, spectral neighbor analysis potential, deep potential molecular dynamics, SCHNET, hierarchically interacting particle neural network, and fast learning of atomistic rare events.</p>\",\"PeriodicalId\":60486,\"journal\":{\"name\":\"国际机械系统动力学学报(英文)\",\"volume\":\"1 2\",\"pages\":\"159-172\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2021-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/msd2.12021\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"国际机械系统动力学学报(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/msd2.12021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"国际机械系统动力学学报(英文)","FirstCategoryId":"1087","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/msd2.12021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 2

摘要

本文综述了基于机器学习的原子间势及其在先进制造业中的应用进展。原子间势在经典分子动力学中是必不可少的。机器学习(ML)的进步使原子间相互作用的快速发展具有从头算的准确性。加速原子仿真可以极大地改变制造技术的设计原理。总结和比较了目前应用最广泛的有监督和无监督机器学习方法。然后,讨论了基于机器学习的原子间相互作用模型:高斯逼近势、谱邻居分析势、深势分子动力学、SCHNET、层次相互作用粒子神经网络和原子稀有事件的快速学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine-learning-based interatomic potentials for advanced manufacturing

Machine-learning-based interatomic potentials for advanced manufacturing

This paper summarizes the progress of machine-learning-based interatomic potentials and their applications in advanced manufacturing. Interatomic potential is essential for classical molecular dynamics. The advancements made in machine learning (ML) have enabled the development of fast interatomic potential with ab initio accuracy. The accelerated atomic simulation can greatly transform the design principle of manufacturing technology. The most widely used supervised and unsupervised ML methods are summarized and compared. Then, the emerging interatomic models based on ML are discussed: Gaussian approximation potential, spectral neighbor analysis potential, deep potential molecular dynamics, SCHNET, hierarchically interacting particle neural network, and fast learning of atomistic rare events.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信