基于量化的随机微分方程优化

Jinwuk Seok, Chang-Sik Cho
{"title":"基于量化的随机微分方程优化","authors":"Jinwuk Seok, Chang-Sik Cho","doi":"10.1109/ICTC55196.2022.9952667","DOIUrl":null,"url":null,"abstract":"We propose a stochastic differential equation for a quantization-based optimization algorithm. A fundamental differential equation describes the state transition by an algorithm to analyze the dynamics of an optimization algorithm. According to the White Noise Hypothesis of quantization error with dense and uniform distribution, we can regard the quantization error as an identically independent distribution(i.i.d.) white noise. It leads that we can obtain a stochastic equation about the quantization-based optimization algorithm to analyze the global dynamics. Numerical experiments show that the proposed algorithm involves better performance than the conventional optimization algorithm, such as simulated annealing.","PeriodicalId":441404,"journal":{"name":"2022 13th International Conference on Information and Communication Technology Convergence (ICTC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic Differential Equation of the Quantization based Optimization\",\"authors\":\"Jinwuk Seok, Chang-Sik Cho\",\"doi\":\"10.1109/ICTC55196.2022.9952667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a stochastic differential equation for a quantization-based optimization algorithm. A fundamental differential equation describes the state transition by an algorithm to analyze the dynamics of an optimization algorithm. According to the White Noise Hypothesis of quantization error with dense and uniform distribution, we can regard the quantization error as an identically independent distribution(i.i.d.) white noise. It leads that we can obtain a stochastic equation about the quantization-based optimization algorithm to analyze the global dynamics. Numerical experiments show that the proposed algorithm involves better performance than the conventional optimization algorithm, such as simulated annealing.\",\"PeriodicalId\":441404,\"journal\":{\"name\":\"2022 13th International Conference on Information and Communication Technology Convergence (ICTC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 13th International Conference on Information and Communication Technology Convergence (ICTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTC55196.2022.9952667\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 13th International Conference on Information and Communication Technology Convergence (ICTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTC55196.2022.9952667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个基于量化的优化算法的随机微分方程。一个基本的微分方程描述了一种算法的状态转移,以分析一种优化算法的动力学。根据量化误差密集均匀分布的白噪声假设,我们可以把量化误差看作是一种同独立分布的白噪声。这使得我们可以得到基于量化的优化算法的随机方程来分析全局动力学。数值实验表明,该算法比传统的优化算法(如模拟退火算法)具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic Differential Equation of the Quantization based Optimization
We propose a stochastic differential equation for a quantization-based optimization algorithm. A fundamental differential equation describes the state transition by an algorithm to analyze the dynamics of an optimization algorithm. According to the White Noise Hypothesis of quantization error with dense and uniform distribution, we can regard the quantization error as an identically independent distribution(i.i.d.) white noise. It leads that we can obtain a stochastic equation about the quantization-based optimization algorithm to analyze the global dynamics. Numerical experiments show that the proposed algorithm involves better performance than the conventional optimization algorithm, such as simulated annealing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信