利用言语和嘴唇特征识别说话人

Guobin Ou, Xin Li, XiaoCao Yao, HongBin Jia, Y. Murphey
{"title":"利用言语和嘴唇特征识别说话人","authors":"Guobin Ou, Xin Li, XiaoCao Yao, HongBin Jia, Y. Murphey","doi":"10.1109/IJCNN.2005.1556307","DOIUrl":null,"url":null,"abstract":"We present a speaker identification system that uses synchronized speech signals and lip features. We developed an algorithm that automatically extracts lip areas from speaker images, and a neural network system that integrates the two different types of signals to give accurate identification of speakers. We show that the proposed system gives better performances than the systems that use only speech or lip features in both text dependant and text independent speaker identification applications.","PeriodicalId":365690,"journal":{"name":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Speaker identification using speech and lip features\",\"authors\":\"Guobin Ou, Xin Li, XiaoCao Yao, HongBin Jia, Y. Murphey\",\"doi\":\"10.1109/IJCNN.2005.1556307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a speaker identification system that uses synchronized speech signals and lip features. We developed an algorithm that automatically extracts lip areas from speaker images, and a neural network system that integrates the two different types of signals to give accurate identification of speakers. We show that the proposed system gives better performances than the systems that use only speech or lip features in both text dependant and text independent speaker identification applications.\",\"PeriodicalId\":365690,\"journal\":{\"name\":\"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2005.1556307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2005.1556307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们提出了一个使用同步语音信号和嘴唇特征的说话人识别系统。我们开发了一种自动从说话人图像中提取嘴唇区域的算法,以及一个集成两种不同类型信号的神经网络系统,以准确识别说话人。我们的研究表明,在文本依赖和文本独立的说话人识别应用中,所提出的系统比仅使用语音或嘴唇特征的系统具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Speaker identification using speech and lip features
We present a speaker identification system that uses synchronized speech signals and lip features. We developed an algorithm that automatically extracts lip areas from speaker images, and a neural network system that integrates the two different types of signals to give accurate identification of speakers. We show that the proposed system gives better performances than the systems that use only speech or lip features in both text dependant and text independent speaker identification applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信