主成分分析张量分解法去除眼部伪影

Sunan Ge, Min Han
{"title":"主成分分析张量分解法去除眼部伪影","authors":"Sunan Ge, Min Han","doi":"10.1109/ICICIP.2012.6391481","DOIUrl":null,"url":null,"abstract":"Electroencephalogram (EEG) is easily polluted by other biomedical signals that influence the disease diagnosis. The waveform of ocular artifacts is similar with epilepsy. It is a significant problem to remove ocular artifacts. At present, the independent component analysis (ICA) is used widely to remove ocular artifacts. However, the ICA is usually used to resolve the problem when the number of source equals the number of observed signals. So we proposed a principal component analysis tensor decomposition method to solve the problem of underdetermined blind source separation. The simulations show that this method is better than the ICA.","PeriodicalId":376265,"journal":{"name":"2012 Third International Conference on Intelligent Control and Information Processing","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Principal component analysis tensor decomposition method to remove ocular artifact\",\"authors\":\"Sunan Ge, Min Han\",\"doi\":\"10.1109/ICICIP.2012.6391481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electroencephalogram (EEG) is easily polluted by other biomedical signals that influence the disease diagnosis. The waveform of ocular artifacts is similar with epilepsy. It is a significant problem to remove ocular artifacts. At present, the independent component analysis (ICA) is used widely to remove ocular artifacts. However, the ICA is usually used to resolve the problem when the number of source equals the number of observed signals. So we proposed a principal component analysis tensor decomposition method to solve the problem of underdetermined blind source separation. The simulations show that this method is better than the ICA.\",\"PeriodicalId\":376265,\"journal\":{\"name\":\"2012 Third International Conference on Intelligent Control and Information Processing\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Third International Conference on Intelligent Control and Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP.2012.6391481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Third International Conference on Intelligent Control and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2012.6391481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

脑电图很容易受到其他影响疾病诊断的生物医学信号的污染。眼波波形与癫痫相似。眼部伪影的去除是一个重要的问题。目前,独立分量分析(ICA)被广泛用于去除眼部伪影。然而,ICA通常用于解决当源数等于观测信号数时的问题。为此,提出了一种主成分分析张量分解方法来解决欠定盲源分离问题。仿真结果表明,该方法优于ICA方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Principal component analysis tensor decomposition method to remove ocular artifact
Electroencephalogram (EEG) is easily polluted by other biomedical signals that influence the disease diagnosis. The waveform of ocular artifacts is similar with epilepsy. It is a significant problem to remove ocular artifacts. At present, the independent component analysis (ICA) is used widely to remove ocular artifacts. However, the ICA is usually used to resolve the problem when the number of source equals the number of observed signals. So we proposed a principal component analysis tensor decomposition method to solve the problem of underdetermined blind source separation. The simulations show that this method is better than the ICA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信