三螺旋胶原水凝胶的结构-性能-功能关系

Giuseppe Tronci, A. Doyle, S. Russell, D. Wood
{"title":"三螺旋胶原水凝胶的结构-性能-功能关系","authors":"Giuseppe Tronci, A. Doyle, S. Russell, D. Wood","doi":"10.1557/opl.2012.1653","DOIUrl":null,"url":null,"abstract":"In order to establish defined biomimetic systems, type I collagen was functionalised with 1,3-Phenylenediacetic acid (Ph) as aromatic, bifunctional segment. Following investigation on molecular organization and macroscopic properties, material functionalities, i.e. degradability and bioactivity, were addressed, aiming at elucidating the potential of this collagen system as mineralization template. Functionalised collagen hydrogels demonstrated a preserved triple helix conformation. Decreased swelling ratio and increased thermo-mechanical properties were observed in comparison to state-of-the-art carbodiimide (EDC)-crosslinked collagen controls. Ph-crosslinked samples displayed no optical damage and only a slight mass decrease (~ 4 wt.-%) following 1-week incubation in simulated body fluid (SBF), while nearly 50 wt.-% degradation was observed in EDC-crosslinked collagen. SEM/EDS revealed amorphous mineral deposition, whereby increased calcium phosphate ratio was suggested in hydrogels with increased Ph content. This investigation provides valuable insights for the synthesis of triple helical collagen materials with enhanced macroscopic properties and controlled degradation. In light of these features, this system will be applied for the design of tissue-like scaffolds for mineralized tissue formation.","PeriodicalId":360136,"journal":{"name":"arXiv: Biological Physics","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Structure-property-function relationships in triple helical collagen hydrogels\",\"authors\":\"Giuseppe Tronci, A. Doyle, S. Russell, D. Wood\",\"doi\":\"10.1557/opl.2012.1653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to establish defined biomimetic systems, type I collagen was functionalised with 1,3-Phenylenediacetic acid (Ph) as aromatic, bifunctional segment. Following investigation on molecular organization and macroscopic properties, material functionalities, i.e. degradability and bioactivity, were addressed, aiming at elucidating the potential of this collagen system as mineralization template. Functionalised collagen hydrogels demonstrated a preserved triple helix conformation. Decreased swelling ratio and increased thermo-mechanical properties were observed in comparison to state-of-the-art carbodiimide (EDC)-crosslinked collagen controls. Ph-crosslinked samples displayed no optical damage and only a slight mass decrease (~ 4 wt.-%) following 1-week incubation in simulated body fluid (SBF), while nearly 50 wt.-% degradation was observed in EDC-crosslinked collagen. SEM/EDS revealed amorphous mineral deposition, whereby increased calcium phosphate ratio was suggested in hydrogels with increased Ph content. This investigation provides valuable insights for the synthesis of triple helical collagen materials with enhanced macroscopic properties and controlled degradation. In light of these features, this system will be applied for the design of tissue-like scaffolds for mineralized tissue formation.\",\"PeriodicalId\":360136,\"journal\":{\"name\":\"arXiv: Biological Physics\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Biological Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1557/opl.2012.1653\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Biological Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1557/opl.2012.1653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

为了建立明确的仿生体系,I型胶原蛋白被1,3-苯二乙酸(Ph)功能化为芳香双功能段。在对其分子结构和宏观特性进行研究后,研究了材料的功能,即可降解性和生物活性,旨在阐明该胶原蛋白系统作为矿化模板的潜力。功能化的胶原水凝胶显示出保存的三螺旋构象。与最先进的碳二亚胺(EDC)交联胶原对照相比,肿胀率降低,热机械性能增加。ph交联的样品在模拟体液(SBF)中孵育1周后没有光学损伤,只有轻微的质量下降(约4 wt.-%),而edc交联的胶原蛋白降解了近50 wt.-%。SEM/EDS显示非晶矿物沉积,表明随着Ph值的增加,水凝胶中磷酸钙的比例增加。该研究为合成具有增强宏观性能和降解控制的三螺旋胶原材料提供了有价值的见解。鉴于这些特点,该系统将应用于矿化组织形成的类组织支架的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structure-property-function relationships in triple helical collagen hydrogels
In order to establish defined biomimetic systems, type I collagen was functionalised with 1,3-Phenylenediacetic acid (Ph) as aromatic, bifunctional segment. Following investigation on molecular organization and macroscopic properties, material functionalities, i.e. degradability and bioactivity, were addressed, aiming at elucidating the potential of this collagen system as mineralization template. Functionalised collagen hydrogels demonstrated a preserved triple helix conformation. Decreased swelling ratio and increased thermo-mechanical properties were observed in comparison to state-of-the-art carbodiimide (EDC)-crosslinked collagen controls. Ph-crosslinked samples displayed no optical damage and only a slight mass decrease (~ 4 wt.-%) following 1-week incubation in simulated body fluid (SBF), while nearly 50 wt.-% degradation was observed in EDC-crosslinked collagen. SEM/EDS revealed amorphous mineral deposition, whereby increased calcium phosphate ratio was suggested in hydrogels with increased Ph content. This investigation provides valuable insights for the synthesis of triple helical collagen materials with enhanced macroscopic properties and controlled degradation. In light of these features, this system will be applied for the design of tissue-like scaffolds for mineralized tissue formation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信