使用有界信息的函数和算法的动力学

S. Grigorieff, Pierre Valarcher
{"title":"使用有界信息的函数和算法的动力学","authors":"S. Grigorieff, Pierre Valarcher","doi":"10.1109/LICS.2012.45","DOIUrl":null,"url":null,"abstract":"We consider computable functionals mapping the Baire space into the set of integers. By continuity, the value of the functional on a given function depends only on a \"critical\" finite part of this function. Care: there is in general no way to compute this critical finite part without querying the function on an arbitrarily larger finite part! Nevertheless, things are different in case there is a uniform bound on the size of the domain of this critical finite part. We prove that, modulo a quadratic blow-up of the bound, one can compute the value of the functional by an algorithm which queries the input function on a uniformly bounded finite part. Up to a constant factor, this quadratic blow-up is optimal. We also characterize such functionals in topological terms using uniformities. As an application of these results, we get a topological characterization of the dynamics of algorithms as modeled by Gurevich's Abstract State Machines.","PeriodicalId":407972,"journal":{"name":"2012 27th Annual IEEE Symposium on Logic in Computer Science","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Functionals Using Bounded Information and the Dynamics of Algorithms\",\"authors\":\"S. Grigorieff, Pierre Valarcher\",\"doi\":\"10.1109/LICS.2012.45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider computable functionals mapping the Baire space into the set of integers. By continuity, the value of the functional on a given function depends only on a \\\"critical\\\" finite part of this function. Care: there is in general no way to compute this critical finite part without querying the function on an arbitrarily larger finite part! Nevertheless, things are different in case there is a uniform bound on the size of the domain of this critical finite part. We prove that, modulo a quadratic blow-up of the bound, one can compute the value of the functional by an algorithm which queries the input function on a uniformly bounded finite part. Up to a constant factor, this quadratic blow-up is optimal. We also characterize such functionals in topological terms using uniformities. As an application of these results, we get a topological characterization of the dynamics of algorithms as modeled by Gurevich's Abstract State Machines.\",\"PeriodicalId\":407972,\"journal\":{\"name\":\"2012 27th Annual IEEE Symposium on Logic in Computer Science\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 27th Annual IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.2012.45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 27th Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2012.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑将贝尔空间映射为整数集的可计算泛函。通过连续性,给定函数上的泛函值只依赖于该函数的“临界”有限部分。注意:如果不查询任意较大的有限部分上的函数,通常没有办法计算这个关键的有限部分!然而,如果这个临界有限部分的区域有一个统一的边界,情况就不一样了。我们证明,对边界的二次爆破取模,可以用在一致有界有限部分上查询输入函数的算法来计算泛函的值。直到一个常数因子,这个二次爆破是最优的。我们还使用均匀性在拓扑术语中描述这些泛函。作为这些结果的应用,我们得到了用Gurevich抽象状态机建模的算法动力学的拓扑表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functionals Using Bounded Information and the Dynamics of Algorithms
We consider computable functionals mapping the Baire space into the set of integers. By continuity, the value of the functional on a given function depends only on a "critical" finite part of this function. Care: there is in general no way to compute this critical finite part without querying the function on an arbitrarily larger finite part! Nevertheless, things are different in case there is a uniform bound on the size of the domain of this critical finite part. We prove that, modulo a quadratic blow-up of the bound, one can compute the value of the functional by an algorithm which queries the input function on a uniformly bounded finite part. Up to a constant factor, this quadratic blow-up is optimal. We also characterize such functionals in topological terms using uniformities. As an application of these results, we get a topological characterization of the dynamics of algorithms as modeled by Gurevich's Abstract State Machines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信