{"title":"使用有界信息的函数和算法的动力学","authors":"S. Grigorieff, Pierre Valarcher","doi":"10.1109/LICS.2012.45","DOIUrl":null,"url":null,"abstract":"We consider computable functionals mapping the Baire space into the set of integers. By continuity, the value of the functional on a given function depends only on a \"critical\" finite part of this function. Care: there is in general no way to compute this critical finite part without querying the function on an arbitrarily larger finite part! Nevertheless, things are different in case there is a uniform bound on the size of the domain of this critical finite part. We prove that, modulo a quadratic blow-up of the bound, one can compute the value of the functional by an algorithm which queries the input function on a uniformly bounded finite part. Up to a constant factor, this quadratic blow-up is optimal. We also characterize such functionals in topological terms using uniformities. As an application of these results, we get a topological characterization of the dynamics of algorithms as modeled by Gurevich's Abstract State Machines.","PeriodicalId":407972,"journal":{"name":"2012 27th Annual IEEE Symposium on Logic in Computer Science","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Functionals Using Bounded Information and the Dynamics of Algorithms\",\"authors\":\"S. Grigorieff, Pierre Valarcher\",\"doi\":\"10.1109/LICS.2012.45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider computable functionals mapping the Baire space into the set of integers. By continuity, the value of the functional on a given function depends only on a \\\"critical\\\" finite part of this function. Care: there is in general no way to compute this critical finite part without querying the function on an arbitrarily larger finite part! Nevertheless, things are different in case there is a uniform bound on the size of the domain of this critical finite part. We prove that, modulo a quadratic blow-up of the bound, one can compute the value of the functional by an algorithm which queries the input function on a uniformly bounded finite part. Up to a constant factor, this quadratic blow-up is optimal. We also characterize such functionals in topological terms using uniformities. As an application of these results, we get a topological characterization of the dynamics of algorithms as modeled by Gurevich's Abstract State Machines.\",\"PeriodicalId\":407972,\"journal\":{\"name\":\"2012 27th Annual IEEE Symposium on Logic in Computer Science\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 27th Annual IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.2012.45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 27th Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2012.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Functionals Using Bounded Information and the Dynamics of Algorithms
We consider computable functionals mapping the Baire space into the set of integers. By continuity, the value of the functional on a given function depends only on a "critical" finite part of this function. Care: there is in general no way to compute this critical finite part without querying the function on an arbitrarily larger finite part! Nevertheless, things are different in case there is a uniform bound on the size of the domain of this critical finite part. We prove that, modulo a quadratic blow-up of the bound, one can compute the value of the functional by an algorithm which queries the input function on a uniformly bounded finite part. Up to a constant factor, this quadratic blow-up is optimal. We also characterize such functionals in topological terms using uniformities. As an application of these results, we get a topological characterization of the dynamics of algorithms as modeled by Gurevich's Abstract State Machines.