一种基于加权Gabor滤波器和径向基函数核的情绪检测改进方法

P. Sisodia, A. Verma, K. Juneja, S. Goel
{"title":"一种基于加权Gabor滤波器和径向基函数核的情绪检测改进方法","authors":"P. Sisodia, A. Verma, K. Juneja, S. Goel","doi":"10.1109/ICCSP.2014.6950031","DOIUrl":null,"url":null,"abstract":"Human emotion detection plays an important role in the human-computer interaction. In this paper, the emotions are detected on segmented image using low dimension weighted Gabor filter bank. The segmentation reduces the space domain and only those facial features are focused that reflects expressions accurately. The classification of selected features values classifies through a RBF network. The experimental results show that by the selection of optimal features, the computational complexity reduces significantly.","PeriodicalId":149965,"journal":{"name":"2014 International Conference on Communication and Signal Processing","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An improved method for emotion detection using weighted Gabor filter and radial basis Function kernel\",\"authors\":\"P. Sisodia, A. Verma, K. Juneja, S. Goel\",\"doi\":\"10.1109/ICCSP.2014.6950031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human emotion detection plays an important role in the human-computer interaction. In this paper, the emotions are detected on segmented image using low dimension weighted Gabor filter bank. The segmentation reduces the space domain and only those facial features are focused that reflects expressions accurately. The classification of selected features values classifies through a RBF network. The experimental results show that by the selection of optimal features, the computational complexity reduces significantly.\",\"PeriodicalId\":149965,\"journal\":{\"name\":\"2014 International Conference on Communication and Signal Processing\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Communication and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSP.2014.6950031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Communication and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSP.2014.6950031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

人类情感检测在人机交互中起着重要的作用。本文采用低维加权Gabor滤波器组对分割后的图像进行情感检测。分割后的图像缩小了空间域,只有准确反映表情的面部特征才会被集中。选取的特征值分类通过RBF网络进行分类。实验结果表明,通过选择最优特征,计算复杂度显著降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved method for emotion detection using weighted Gabor filter and radial basis Function kernel
Human emotion detection plays an important role in the human-computer interaction. In this paper, the emotions are detected on segmented image using low dimension weighted Gabor filter bank. The segmentation reduces the space domain and only those facial features are focused that reflects expressions accurately. The classification of selected features values classifies through a RBF network. The experimental results show that by the selection of optimal features, the computational complexity reduces significantly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信