Alberto Purpura, Marco Maggipinto, G. Silvello, Gian Antonio Susto
{"title":"神经IR中的概率词嵌入:一个有前途的模型,但目前并不像预期的那样工作","authors":"Alberto Purpura, Marco Maggipinto, G. Silvello, Gian Antonio Susto","doi":"10.1145/3341981.3344217","DOIUrl":null,"url":null,"abstract":"In this paper, we discuss how a promising word vector representation based on Probabilistic Word Embeddings (PWE) can be applied to Neural Information Retrieval (NeuIR). We illustrate PWE pros for text retrieval, and identify the core issues which prevent a full exploitation of their potential. In particular, we focus on the application of elliptical probabilistic embeddings, a type of PWE, to a NeuIR system (i.e., MatchPyramid). The main contributions of this paper are: (i) an analysis of the pros and cons of PWE in NeuIR; (ii) an in-depth comparison of PWE against pre-trained Word2Vec, FastText and WordNet word embeddings; (iii) an extension of the MatchPyramid model to take advantage of broader word relations information from WordNet; (iv) a topic-level evaluation of the MatchPyramid ranking models employing the considered word embeddings. Finally, we discuss some lessons learned and outline some open research problems to employ PWE in NeuIR systems more effectively.","PeriodicalId":173154,"journal":{"name":"Proceedings of the 2019 ACM SIGIR International Conference on Theory of Information Retrieval","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Probabilistic Word Embeddings in Neural IR: A Promising Model That Does Not Work as Expected (For Now)\",\"authors\":\"Alberto Purpura, Marco Maggipinto, G. Silvello, Gian Antonio Susto\",\"doi\":\"10.1145/3341981.3344217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we discuss how a promising word vector representation based on Probabilistic Word Embeddings (PWE) can be applied to Neural Information Retrieval (NeuIR). We illustrate PWE pros for text retrieval, and identify the core issues which prevent a full exploitation of their potential. In particular, we focus on the application of elliptical probabilistic embeddings, a type of PWE, to a NeuIR system (i.e., MatchPyramid). The main contributions of this paper are: (i) an analysis of the pros and cons of PWE in NeuIR; (ii) an in-depth comparison of PWE against pre-trained Word2Vec, FastText and WordNet word embeddings; (iii) an extension of the MatchPyramid model to take advantage of broader word relations information from WordNet; (iv) a topic-level evaluation of the MatchPyramid ranking models employing the considered word embeddings. Finally, we discuss some lessons learned and outline some open research problems to employ PWE in NeuIR systems more effectively.\",\"PeriodicalId\":173154,\"journal\":{\"name\":\"Proceedings of the 2019 ACM SIGIR International Conference on Theory of Information Retrieval\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 ACM SIGIR International Conference on Theory of Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3341981.3344217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 ACM SIGIR International Conference on Theory of Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3341981.3344217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Probabilistic Word Embeddings in Neural IR: A Promising Model That Does Not Work as Expected (For Now)
In this paper, we discuss how a promising word vector representation based on Probabilistic Word Embeddings (PWE) can be applied to Neural Information Retrieval (NeuIR). We illustrate PWE pros for text retrieval, and identify the core issues which prevent a full exploitation of their potential. In particular, we focus on the application of elliptical probabilistic embeddings, a type of PWE, to a NeuIR system (i.e., MatchPyramid). The main contributions of this paper are: (i) an analysis of the pros and cons of PWE in NeuIR; (ii) an in-depth comparison of PWE against pre-trained Word2Vec, FastText and WordNet word embeddings; (iii) an extension of the MatchPyramid model to take advantage of broader word relations information from WordNet; (iv) a topic-level evaluation of the MatchPyramid ranking models employing the considered word embeddings. Finally, we discuss some lessons learned and outline some open research problems to employ PWE in NeuIR systems more effectively.