基于平稳小波变换和过零区间阈值的心电降噪

Lahcen El Bouny, Mohammed Khalil, A. Adib
{"title":"基于平稳小波变换和过零区间阈值的心电降噪","authors":"Lahcen El Bouny, Mohammed Khalil, A. Adib","doi":"10.1109/EITECH.2017.8255255","DOIUrl":null,"url":null,"abstract":"In this paper, a novel method for removing white gaussian noise from raw ECG signals based on Stationary Wavelet Transform and Interval Thresholding is proposed. Unlike the classical existing denoising methods in the wavelet domains, that apply a simple thresholding to details coefficients, we considers the extremums of each zero-crossings interval in the wavelet domain a whole to perform a thresholding function, which can highlight preserve the most clinical information about the region of the QRS complex in the reconstructed ECG signal. The performance of the proposed SWT-IT (Stationary wavelet transform-Interval Thresholding) method is evaluated in terms of Signal-to-Noise Ratio (SNR), Root Mean Square Error (RMSE), and Percent Root Mean Square Difference (PRD) using real ECG signals acquired from the MIT-BIH Arrhythmia Database. The simulations results show that the proposed method demonstrate superior performance compared with conventional ECG denoising approaches based on the wavelet filtering.","PeriodicalId":447139,"journal":{"name":"2017 International Conference on Electrical and Information Technologies (ICEIT)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"ECG noise reduction based on stationary wavelet transform and zero-crossings interval thresholding\",\"authors\":\"Lahcen El Bouny, Mohammed Khalil, A. Adib\",\"doi\":\"10.1109/EITECH.2017.8255255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel method for removing white gaussian noise from raw ECG signals based on Stationary Wavelet Transform and Interval Thresholding is proposed. Unlike the classical existing denoising methods in the wavelet domains, that apply a simple thresholding to details coefficients, we considers the extremums of each zero-crossings interval in the wavelet domain a whole to perform a thresholding function, which can highlight preserve the most clinical information about the region of the QRS complex in the reconstructed ECG signal. The performance of the proposed SWT-IT (Stationary wavelet transform-Interval Thresholding) method is evaluated in terms of Signal-to-Noise Ratio (SNR), Root Mean Square Error (RMSE), and Percent Root Mean Square Difference (PRD) using real ECG signals acquired from the MIT-BIH Arrhythmia Database. The simulations results show that the proposed method demonstrate superior performance compared with conventional ECG denoising approaches based on the wavelet filtering.\",\"PeriodicalId\":447139,\"journal\":{\"name\":\"2017 International Conference on Electrical and Information Technologies (ICEIT)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Electrical and Information Technologies (ICEIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EITECH.2017.8255255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Electrical and Information Technologies (ICEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EITECH.2017.8255255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文提出了一种基于平稳小波变换和区间阈值法去除原始心电信号高斯白噪声的新方法。与传统的小波域去噪方法对细节系数进行简单的阈值处理不同,我们将小波域各过零区间的极值作为一个整体来进行阈值处理,可以突出保留重构心电信号中QRS复核区域的大部分临床信息。采用从MIT-BIH心律失常数据库获取的真实心电信号,根据信噪比(SNR)、均方根误差(RMSE)和百分均方根差(PRD)对所提出的SWT-IT(平稳小波变换-区间阈值)方法的性能进行了评估。仿真结果表明,与传统的基于小波滤波的心电信号去噪方法相比,该方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ECG noise reduction based on stationary wavelet transform and zero-crossings interval thresholding
In this paper, a novel method for removing white gaussian noise from raw ECG signals based on Stationary Wavelet Transform and Interval Thresholding is proposed. Unlike the classical existing denoising methods in the wavelet domains, that apply a simple thresholding to details coefficients, we considers the extremums of each zero-crossings interval in the wavelet domain a whole to perform a thresholding function, which can highlight preserve the most clinical information about the region of the QRS complex in the reconstructed ECG signal. The performance of the proposed SWT-IT (Stationary wavelet transform-Interval Thresholding) method is evaluated in terms of Signal-to-Noise Ratio (SNR), Root Mean Square Error (RMSE), and Percent Root Mean Square Difference (PRD) using real ECG signals acquired from the MIT-BIH Arrhythmia Database. The simulations results show that the proposed method demonstrate superior performance compared with conventional ECG denoising approaches based on the wavelet filtering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信