S. J. Filho, Matheus T. Moreira, Ney Laert Vilar Calazans, Fabiano Hessel
{"title":"高频risc处理器:性能评估","authors":"S. J. Filho, Matheus T. Moreira, Ney Laert Vilar Calazans, Fabiano Hessel","doi":"10.1109/LASCAS.2016.7451018","DOIUrl":null,"url":null,"abstract":"This paper presents HF-RISC, a 32-bit RISC processor, along with its associated programming toolchain. The instruction set architecture of the processor is based on MIPS I and its hardware organization comprises three pipeline stages. The processor was synthesized in four different technology nodes for maximum frequency and simulated using CoreMark, an industry-standard performance evaluation benchmark. Using data obtained from synthesis and benchmarking we analyze the processor performance and compare it to similar commercial products. Obtained results indicate that HF-RISC is a good option for embedded design, as it presents performance figures similar to state-of-the-art ARM processors. Furthermore, its partially reconfigurable hardware organization allows the designer to explore performance and area trade offs.","PeriodicalId":129875,"journal":{"name":"2016 IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The HF-RISC processor: Performance assessment\",\"authors\":\"S. J. Filho, Matheus T. Moreira, Ney Laert Vilar Calazans, Fabiano Hessel\",\"doi\":\"10.1109/LASCAS.2016.7451018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents HF-RISC, a 32-bit RISC processor, along with its associated programming toolchain. The instruction set architecture of the processor is based on MIPS I and its hardware organization comprises three pipeline stages. The processor was synthesized in four different technology nodes for maximum frequency and simulated using CoreMark, an industry-standard performance evaluation benchmark. Using data obtained from synthesis and benchmarking we analyze the processor performance and compare it to similar commercial products. Obtained results indicate that HF-RISC is a good option for embedded design, as it presents performance figures similar to state-of-the-art ARM processors. Furthermore, its partially reconfigurable hardware organization allows the designer to explore performance and area trade offs.\",\"PeriodicalId\":129875,\"journal\":{\"name\":\"2016 IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LASCAS.2016.7451018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LASCAS.2016.7451018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper presents HF-RISC, a 32-bit RISC processor, along with its associated programming toolchain. The instruction set architecture of the processor is based on MIPS I and its hardware organization comprises three pipeline stages. The processor was synthesized in four different technology nodes for maximum frequency and simulated using CoreMark, an industry-standard performance evaluation benchmark. Using data obtained from synthesis and benchmarking we analyze the processor performance and compare it to similar commercial products. Obtained results indicate that HF-RISC is a good option for embedded design, as it presents performance figures similar to state-of-the-art ARM processors. Furthermore, its partially reconfigurable hardware organization allows the designer to explore performance and area trade offs.