鲁棒滤波和平滑在跟踪数据中的应用

W. Agee, Robert Turner
{"title":"鲁棒滤波和平滑在跟踪数据中的应用","authors":"W. Agee, Robert Turner","doi":"10.1109/CDC.1978.267899","DOIUrl":null,"url":null,"abstract":"Robust methods provide a fresh approach to the problem of treatment of wild observations in filtering and smoothing problems. The robust M-estimates of regression are extended to filtering and fixed lag smoothing employing a pseudodensity of the observations in a maximum likelihood derivation of the filter and fixed lag smoother. These robust methods have been applied to simulated and real tracking data to obtain improved estimstion performance in the presence of wild observations.","PeriodicalId":375119,"journal":{"name":"1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Application of robust filtering and smoothing to tracking data\",\"authors\":\"W. Agee, Robert Turner\",\"doi\":\"10.1109/CDC.1978.267899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robust methods provide a fresh approach to the problem of treatment of wild observations in filtering and smoothing problems. The robust M-estimates of regression are extended to filtering and fixed lag smoothing employing a pseudodensity of the observations in a maximum likelihood derivation of the filter and fixed lag smoother. These robust methods have been applied to simulated and real tracking data to obtain improved estimstion performance in the presence of wild observations.\",\"PeriodicalId\":375119,\"journal\":{\"name\":\"1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.1978.267899\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1978.267899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

鲁棒方法为处理滤波和平滑问题中的野观测值问题提供了一种新的方法。回归的稳健m估计扩展到滤波和固定滞后平滑,在滤波器和固定滞后平滑的最大似然推导中使用观测的伪密度。这些鲁棒方法已应用于模拟和真实跟踪数据,以获得在野外观测存在下改进的估计性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of robust filtering and smoothing to tracking data
Robust methods provide a fresh approach to the problem of treatment of wild observations in filtering and smoothing problems. The robust M-estimates of regression are extended to filtering and fixed lag smoothing employing a pseudodensity of the observations in a maximum likelihood derivation of the filter and fixed lag smoother. These robust methods have been applied to simulated and real tracking data to obtain improved estimstion performance in the presence of wild observations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信