{"title":"强化学习能解决安全问题吗?分布式认知无线网络中聚类方案的研究","authors":"Mee Hong Ling, K. Yau","doi":"10.1109/ICOIN.2019.8718163","DOIUrl":null,"url":null,"abstract":"This paper investigates the effectiveness of reinforcement learning (RL) model in clustering as an approach to achieve higher network scalability in distributed cognitive radio networks. Specifically, it analyzes the effects of RL parameters, namely the learning rate and discount factor in a volatile environment, which consists of member nodes (or secondary users) that launch attacks with various probabilities of attack. The clusterhead, which resides in an operating region (environment) that is characterized by the probability of attacks, countermeasures the malicious SUs by leveraging on a RL model. Simulation results have shown that in a volatile operating environment, the RL model with learning rate α= 1 provides the highest network scalability when the probability of attacks ranges between 0.3 and 0.7, while the discount factor γ does not play a significant role in learning in an operating environment that is volatile due to attacks.","PeriodicalId":422041,"journal":{"name":"2019 International Conference on Information Networking (ICOIN)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Can Reinforcement Learning Address Security Issues? an Investigation into a Clustering Scheme in Distributed Cognitive Radio Networks\",\"authors\":\"Mee Hong Ling, K. Yau\",\"doi\":\"10.1109/ICOIN.2019.8718163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the effectiveness of reinforcement learning (RL) model in clustering as an approach to achieve higher network scalability in distributed cognitive radio networks. Specifically, it analyzes the effects of RL parameters, namely the learning rate and discount factor in a volatile environment, which consists of member nodes (or secondary users) that launch attacks with various probabilities of attack. The clusterhead, which resides in an operating region (environment) that is characterized by the probability of attacks, countermeasures the malicious SUs by leveraging on a RL model. Simulation results have shown that in a volatile operating environment, the RL model with learning rate α= 1 provides the highest network scalability when the probability of attacks ranges between 0.3 and 0.7, while the discount factor γ does not play a significant role in learning in an operating environment that is volatile due to attacks.\",\"PeriodicalId\":422041,\"journal\":{\"name\":\"2019 International Conference on Information Networking (ICOIN)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Information Networking (ICOIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOIN.2019.8718163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Information Networking (ICOIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOIN.2019.8718163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Can Reinforcement Learning Address Security Issues? an Investigation into a Clustering Scheme in Distributed Cognitive Radio Networks
This paper investigates the effectiveness of reinforcement learning (RL) model in clustering as an approach to achieve higher network scalability in distributed cognitive radio networks. Specifically, it analyzes the effects of RL parameters, namely the learning rate and discount factor in a volatile environment, which consists of member nodes (or secondary users) that launch attacks with various probabilities of attack. The clusterhead, which resides in an operating region (environment) that is characterized by the probability of attacks, countermeasures the malicious SUs by leveraging on a RL model. Simulation results have shown that in a volatile operating environment, the RL model with learning rate α= 1 provides the highest network scalability when the probability of attacks ranges between 0.3 and 0.7, while the discount factor γ does not play a significant role in learning in an operating environment that is volatile due to attacks.