{"title":"基于数据增强的有限数据故障识别的噪声鲁棒表示","authors":"Zahra Taghiyarrenani, A. Berenji","doi":"10.36001/phme.2022.v7i1.3334","DOIUrl":null,"url":null,"abstract":"Noise will be unavoidably present in the data collected from physical environments, regardless of how sophisticated the measurement equipment is. Furthermore, collecting enough faulty data is a challenge since operating industrial machines in faulty modes not only has severe consequences to the machine health, but also may affect collateral machinery critically, from health state point of view. In this paper, we propose a method of denoising with limited data for the purpose of fault identification. In addition, our method is capable of removing multiple levels of noise simultaneously. For this purpose, inspired by unsupervised contrastive learning, we first augment the data with multiple levels of noise. Later, we construct a new feature representation using Contrastive Loss. The last step is building a classifier on top of the learned representation; this classifier can detect various faults in noisy environments. The experiments on the SOUTHEAST UNIVERSITY (SEU) dataset of bearings confirm that our method can simultaneously remove multiple noise levels.","PeriodicalId":422825,"journal":{"name":"PHM Society European Conference","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Noise-Robust Representation for Fault Identification with Limited Data via Data Augmentation\",\"authors\":\"Zahra Taghiyarrenani, A. Berenji\",\"doi\":\"10.36001/phme.2022.v7i1.3334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Noise will be unavoidably present in the data collected from physical environments, regardless of how sophisticated the measurement equipment is. Furthermore, collecting enough faulty data is a challenge since operating industrial machines in faulty modes not only has severe consequences to the machine health, but also may affect collateral machinery critically, from health state point of view. In this paper, we propose a method of denoising with limited data for the purpose of fault identification. In addition, our method is capable of removing multiple levels of noise simultaneously. For this purpose, inspired by unsupervised contrastive learning, we first augment the data with multiple levels of noise. Later, we construct a new feature representation using Contrastive Loss. The last step is building a classifier on top of the learned representation; this classifier can detect various faults in noisy environments. The experiments on the SOUTHEAST UNIVERSITY (SEU) dataset of bearings confirm that our method can simultaneously remove multiple noise levels.\",\"PeriodicalId\":422825,\"journal\":{\"name\":\"PHM Society European Conference\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PHM Society European Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36001/phme.2022.v7i1.3334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PHM Society European Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/phme.2022.v7i1.3334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Noise-Robust Representation for Fault Identification with Limited Data via Data Augmentation
Noise will be unavoidably present in the data collected from physical environments, regardless of how sophisticated the measurement equipment is. Furthermore, collecting enough faulty data is a challenge since operating industrial machines in faulty modes not only has severe consequences to the machine health, but also may affect collateral machinery critically, from health state point of view. In this paper, we propose a method of denoising with limited data for the purpose of fault identification. In addition, our method is capable of removing multiple levels of noise simultaneously. For this purpose, inspired by unsupervised contrastive learning, we first augment the data with multiple levels of noise. Later, we construct a new feature representation using Contrastive Loss. The last step is building a classifier on top of the learned representation; this classifier can detect various faults in noisy environments. The experiments on the SOUTHEAST UNIVERSITY (SEU) dataset of bearings confirm that our method can simultaneously remove multiple noise levels.