基于GrowCut分割的多模态运动目标检测方法

Xiuwei Zhang, Yanning Zhang, S. Maybank, Jun Liang
{"title":"基于GrowCut分割的多模态运动目标检测方法","authors":"Xiuwei Zhang, Yanning Zhang, S. Maybank, Jun Liang","doi":"10.1109/CIMSIVP.2014.7013295","DOIUrl":null,"url":null,"abstract":"Commonly-used motion detection methods, such as background subtraction, optical flow and frame subtraction are all based on the differences between consecutive image frames. There are many difficulties, including similarities between objects and background, shadows, low illumination, thermal halo. Visible light images and thermal images are complementary. Many difficulties in motion detection do not occur simultaneously in visible and thermal images. The proposed multimodal detection method combines the advantages of multi-modal image and GrowCut segmentation, overcomes the difficulties mentioned above and works well in complicated outdoor surveillance environments. Experiments showed our method yields better results than commonly-used fusion methods.","PeriodicalId":210556,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence for Multimedia, Signal and Vision Processing (CIMSIVP)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A multi-modal moving object detection method based on GrowCut segmentation\",\"authors\":\"Xiuwei Zhang, Yanning Zhang, S. Maybank, Jun Liang\",\"doi\":\"10.1109/CIMSIVP.2014.7013295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Commonly-used motion detection methods, such as background subtraction, optical flow and frame subtraction are all based on the differences between consecutive image frames. There are many difficulties, including similarities between objects and background, shadows, low illumination, thermal halo. Visible light images and thermal images are complementary. Many difficulties in motion detection do not occur simultaneously in visible and thermal images. The proposed multimodal detection method combines the advantages of multi-modal image and GrowCut segmentation, overcomes the difficulties mentioned above and works well in complicated outdoor surveillance environments. Experiments showed our method yields better results than commonly-used fusion methods.\",\"PeriodicalId\":210556,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence for Multimedia, Signal and Vision Processing (CIMSIVP)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence for Multimedia, Signal and Vision Processing (CIMSIVP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIMSIVP.2014.7013295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence for Multimedia, Signal and Vision Processing (CIMSIVP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMSIVP.2014.7013295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

常用的运动检测方法,如背景减法、光流法、帧减法等,都是基于连续图像帧之间的差异。有很多困难,包括物体和背景之间的相似性,阴影,低照度,热晕。可见光图像和热图像是互补的。运动检测中的许多困难并不同时发生在可见光和热成像中。本文提出的多模态检测方法结合了多模态图像和GrowCut分割的优点,克服了上述困难,在复杂的室外监控环境中效果良好。实验结果表明,该方法比常用的融合方法效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multi-modal moving object detection method based on GrowCut segmentation
Commonly-used motion detection methods, such as background subtraction, optical flow and frame subtraction are all based on the differences between consecutive image frames. There are many difficulties, including similarities between objects and background, shadows, low illumination, thermal halo. Visible light images and thermal images are complementary. Many difficulties in motion detection do not occur simultaneously in visible and thermal images. The proposed multimodal detection method combines the advantages of multi-modal image and GrowCut segmentation, overcomes the difficulties mentioned above and works well in complicated outdoor surveillance environments. Experiments showed our method yields better results than commonly-used fusion methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信