一种基于zbdd的可扩展阈值逻辑合成方法

Ashok Kumar Palaniswamy, S. Tragoudas
{"title":"一种基于zbdd的可扩展阈值逻辑合成方法","authors":"Ashok Kumar Palaniswamy, S. Tragoudas","doi":"10.1145/2206781.2206856","DOIUrl":null,"url":null,"abstract":"A scalable synthesis method for large input threshold logic circuits using Zero Suppressed Binary Decision Diagrams is introduced. Existing synthesis methods require that a large input function must be initially decomposed using small input functions and this impacts the synthesis cost. The presented approach in this paper does not consider such restrictions. It is experimentally shown that the proposed method can synthesize the primary outputs of existing benchmarks without consulting the net-list, and the synthesis cost is significantly reduced over the existing methods.","PeriodicalId":272619,"journal":{"name":"ACM Great Lakes Symposium on VLSI","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A scalable threshold logic synthesis method using ZBDDs\",\"authors\":\"Ashok Kumar Palaniswamy, S. Tragoudas\",\"doi\":\"10.1145/2206781.2206856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A scalable synthesis method for large input threshold logic circuits using Zero Suppressed Binary Decision Diagrams is introduced. Existing synthesis methods require that a large input function must be initially decomposed using small input functions and this impacts the synthesis cost. The presented approach in this paper does not consider such restrictions. It is experimentally shown that the proposed method can synthesize the primary outputs of existing benchmarks without consulting the net-list, and the synthesis cost is significantly reduced over the existing methods.\",\"PeriodicalId\":272619,\"journal\":{\"name\":\"ACM Great Lakes Symposium on VLSI\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Great Lakes Symposium on VLSI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2206781.2206856\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Great Lakes Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2206781.2206856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

介绍了一种基于零抑制二值决策图的大输入阈值逻辑电路的可扩展综合方法。现有的合成方法需要先用小的输入函数分解大的输入函数,这影响了合成成本。本文提出的方法不考虑这些限制。实验表明,该方法可以在不参考网络列表的情况下综合现有基准的主要输出,并且比现有方法显著降低了综合成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A scalable threshold logic synthesis method using ZBDDs
A scalable synthesis method for large input threshold logic circuits using Zero Suppressed Binary Decision Diagrams is introduced. Existing synthesis methods require that a large input function must be initially decomposed using small input functions and this impacts the synthesis cost. The presented approach in this paper does not consider such restrictions. It is experimentally shown that the proposed method can synthesize the primary outputs of existing benchmarks without consulting the net-list, and the synthesis cost is significantly reduced over the existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信