{"title":"基于DNN的ADHD fMRI数据的功能连接系数分类","authors":"N. Chauhan, Byung-Jae Choi","doi":"10.5391/ijfis.2020.20.4.255","DOIUrl":null,"url":null,"abstract":"Functional magnetic resonance imaging (fMRI) has emerged as a popular research topic in neuroimaging for automated classification and recognition of different brain disorders. Attention Deficit Hyperactivity Disorder (ADHD) is one of the most common behavioral disorders in young children because its underlying mechanism is still not completely under-stood. The use of fMRI data in ADHD research is utilized to reflect the neural mechanism and functional integration of the brain. Alteration in the functional connectivity of the brain is expected to provide useful information for classifying or predicting brain disorders. In this study, a deep neural network (DNN) approach was applied to classify ADHD using functional connectivity-based fMRI data. The functional connectivity coefficient was extracted between regions determined by independent component analysis (ICA) and used to feed the DNN for classification. The DNN model demonstrated an accuracy of 95% with the preprocessed fMRI data from Nilearn, which is a Python module for neuroimaging data.","PeriodicalId":354250,"journal":{"name":"Int. J. Fuzzy Log. Intell. Syst.","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"DNN based Classification of ADHD fMRI Data using Functional Connectivity Coefficient\",\"authors\":\"N. Chauhan, Byung-Jae Choi\",\"doi\":\"10.5391/ijfis.2020.20.4.255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Functional magnetic resonance imaging (fMRI) has emerged as a popular research topic in neuroimaging for automated classification and recognition of different brain disorders. Attention Deficit Hyperactivity Disorder (ADHD) is one of the most common behavioral disorders in young children because its underlying mechanism is still not completely under-stood. The use of fMRI data in ADHD research is utilized to reflect the neural mechanism and functional integration of the brain. Alteration in the functional connectivity of the brain is expected to provide useful information for classifying or predicting brain disorders. In this study, a deep neural network (DNN) approach was applied to classify ADHD using functional connectivity-based fMRI data. The functional connectivity coefficient was extracted between regions determined by independent component analysis (ICA) and used to feed the DNN for classification. The DNN model demonstrated an accuracy of 95% with the preprocessed fMRI data from Nilearn, which is a Python module for neuroimaging data.\",\"PeriodicalId\":354250,\"journal\":{\"name\":\"Int. J. Fuzzy Log. Intell. Syst.\",\"volume\":\"139 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Fuzzy Log. Intell. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5391/ijfis.2020.20.4.255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Fuzzy Log. Intell. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5391/ijfis.2020.20.4.255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DNN based Classification of ADHD fMRI Data using Functional Connectivity Coefficient
Functional magnetic resonance imaging (fMRI) has emerged as a popular research topic in neuroimaging for automated classification and recognition of different brain disorders. Attention Deficit Hyperactivity Disorder (ADHD) is one of the most common behavioral disorders in young children because its underlying mechanism is still not completely under-stood. The use of fMRI data in ADHD research is utilized to reflect the neural mechanism and functional integration of the brain. Alteration in the functional connectivity of the brain is expected to provide useful information for classifying or predicting brain disorders. In this study, a deep neural network (DNN) approach was applied to classify ADHD using functional connectivity-based fMRI data. The functional connectivity coefficient was extracted between regions determined by independent component analysis (ICA) and used to feed the DNN for classification. The DNN model demonstrated an accuracy of 95% with the preprocessed fMRI data from Nilearn, which is a Python module for neuroimaging data.