{"title":"具有均匀噪声和信号相关偏移的信道的最大似然解码","authors":"R. Bu, J. Weber, Kees A. Schouhamer Immink","doi":"10.1109/ISIT44484.2020.9174270","DOIUrl":null,"url":null,"abstract":"Maximum likelihood (ML) decision criteria have been developed for channels suffering from signal independent offset mismatch. Here, such criteria are considered for signal dependent offset, which means that the value of the offset may differ for distinct signal levels rather than being the same for all levels. An ML decision criterion is derived, assuming uniform distributions for both the noise and the offset. In particular, for the proposed ML decoder, bounds are determined on the standard deviations of the noise and the offset which lead to a word error rate equal to zero. Simulation results are presented confirming the findings.","PeriodicalId":159311,"journal":{"name":"2020 IEEE International Symposium on Information Theory (ISIT)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Maximum Likelihood Decoding for Channels with Uniform Noise and Signal Dependent Offset\",\"authors\":\"R. Bu, J. Weber, Kees A. Schouhamer Immink\",\"doi\":\"10.1109/ISIT44484.2020.9174270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maximum likelihood (ML) decision criteria have been developed for channels suffering from signal independent offset mismatch. Here, such criteria are considered for signal dependent offset, which means that the value of the offset may differ for distinct signal levels rather than being the same for all levels. An ML decision criterion is derived, assuming uniform distributions for both the noise and the offset. In particular, for the proposed ML decoder, bounds are determined on the standard deviations of the noise and the offset which lead to a word error rate equal to zero. Simulation results are presented confirming the findings.\",\"PeriodicalId\":159311,\"journal\":{\"name\":\"2020 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT44484.2020.9174270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT44484.2020.9174270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Maximum Likelihood Decoding for Channels with Uniform Noise and Signal Dependent Offset
Maximum likelihood (ML) decision criteria have been developed for channels suffering from signal independent offset mismatch. Here, such criteria are considered for signal dependent offset, which means that the value of the offset may differ for distinct signal levels rather than being the same for all levels. An ML decision criterion is derived, assuming uniform distributions for both the noise and the offset. In particular, for the proposed ML decoder, bounds are determined on the standard deviations of the noise and the offset which lead to a word error rate equal to zero. Simulation results are presented confirming the findings.