黎曼假设的反证

Igor Hrnčić
{"title":"黎曼假设的反证","authors":"Igor Hrnčić","doi":"10.13187/rjmr.a.2018.1.19","DOIUrl":null,"url":null,"abstract":"This paper disproves the Riemann hypothesis by generalizing the results about the Perron inversion formula from Titchmarsh's book The Theory of the Riemann Zeta-Function to rearrangements of conditionally convergent series that represent the reciprocal function of zeta. When one replaces the conditionally convergent series in Titchmarsh's theorems and consequent proofs by their rearrangements, the left hand sides of equations change their magnitude, but the right hand sides remain of the same magnitude. This contradiction disproves the Riemann hypothesis.","PeriodicalId":105682,"journal":{"name":"Russian Journal of Mathematical Research. Series A","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Disproof of the Riemann Hypothesis\",\"authors\":\"Igor Hrnčić\",\"doi\":\"10.13187/rjmr.a.2018.1.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper disproves the Riemann hypothesis by generalizing the results about the Perron inversion formula from Titchmarsh's book The Theory of the Riemann Zeta-Function to rearrangements of conditionally convergent series that represent the reciprocal function of zeta. When one replaces the conditionally convergent series in Titchmarsh's theorems and consequent proofs by their rearrangements, the left hand sides of equations change their magnitude, but the right hand sides remain of the same magnitude. This contradiction disproves the Riemann hypothesis.\",\"PeriodicalId\":105682,\"journal\":{\"name\":\"Russian Journal of Mathematical Research. Series A\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Mathematical Research. Series A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13187/rjmr.a.2018.1.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Research. Series A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13187/rjmr.a.2018.1.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文将Titchmarsh的《黎曼ζ函数理论》一书中关于Perron反演公式的结果推广到表示ζ的倒函数的条件收敛级数的重排,从而证明了黎曼假设的否定。当人们将蒂奇马什定理及其后续证明中的条件收敛级数重新排列时,方程左边的大小改变了,但右边的大小保持不变。这个矛盾反驳了黎曼假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Disproof of the Riemann Hypothesis
This paper disproves the Riemann hypothesis by generalizing the results about the Perron inversion formula from Titchmarsh's book The Theory of the Riemann Zeta-Function to rearrangements of conditionally convergent series that represent the reciprocal function of zeta. When one replaces the conditionally convergent series in Titchmarsh's theorems and consequent proofs by their rearrangements, the left hand sides of equations change their magnitude, but the right hand sides remain of the same magnitude. This contradiction disproves the Riemann hypothesis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信