直接分割逆向工程

M. Vanco, G. Brunnett
{"title":"直接分割逆向工程","authors":"M. Vanco, G. Brunnett","doi":"10.1109/CW.2002.1180856","DOIUrl":null,"url":null,"abstract":"In reverse engineering a physical object is digitally reconstructed from a set of boundary points. In the segmentation phase these points are grouped into subsets to facilitate consecutive steps as surface fitting. In this paper we present a step segmentation method with subsequent classification of simple algebraic surfaces. Our method is direct in the sense that it operates directly on the point set in contrast to other approaches that are based on a triangulation of the data set. The segmentation process involves a fast algorithm for k-nearest neighbors search and an estimation of first and second order surface properties. First order segmentation, based on normal vectors, provides an initial subdivision of the surface and detects sharp edges as well as flat or highly curved areas. One of the main features of our method is to proceed by alternating the steps of segmentation and normal vector estimation. Second order segmentation subdivides the surface according to principal curvatures and provides a sufficient foundation for the classification of simple algebraic surfaces. If the boundary of the original object contains such surfaces the segmentation is optimized based on the result of a surface fitting procedure.","PeriodicalId":376322,"journal":{"name":"First International Symposium on Cyber Worlds, 2002. Proceedings.","volume":"90 B4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Direct segmentation for reverse engineering\",\"authors\":\"M. Vanco, G. Brunnett\",\"doi\":\"10.1109/CW.2002.1180856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In reverse engineering a physical object is digitally reconstructed from a set of boundary points. In the segmentation phase these points are grouped into subsets to facilitate consecutive steps as surface fitting. In this paper we present a step segmentation method with subsequent classification of simple algebraic surfaces. Our method is direct in the sense that it operates directly on the point set in contrast to other approaches that are based on a triangulation of the data set. The segmentation process involves a fast algorithm for k-nearest neighbors search and an estimation of first and second order surface properties. First order segmentation, based on normal vectors, provides an initial subdivision of the surface and detects sharp edges as well as flat or highly curved areas. One of the main features of our method is to proceed by alternating the steps of segmentation and normal vector estimation. Second order segmentation subdivides the surface according to principal curvatures and provides a sufficient foundation for the classification of simple algebraic surfaces. If the boundary of the original object contains such surfaces the segmentation is optimized based on the result of a surface fitting procedure.\",\"PeriodicalId\":376322,\"journal\":{\"name\":\"First International Symposium on Cyber Worlds, 2002. Proceedings.\",\"volume\":\"90 B4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"First International Symposium on Cyber Worlds, 2002. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CW.2002.1180856\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"First International Symposium on Cyber Worlds, 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CW.2002.1180856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在逆向工程中,物理对象是由一组边界点数字化重建的。在分割阶段,这些点被分成子集,以方便连续的步骤作为表面拟合。本文提出了一种对简单代数曲面进行步分割并进行后续分类的方法。我们的方法是直接的,因为它直接对点集进行操作,而不是基于数据集的三角剖分的其他方法。分割过程包括快速的k近邻搜索算法和一阶和二阶曲面性质估计。基于法向量的一阶分割提供了表面的初始细分,并检测尖锐边缘以及平坦或高度弯曲的区域。该方法的主要特点之一是分割和法向量估计交替进行。二阶分割根据主曲率对曲面进行细分,为简单代数曲面的分类提供了充分的基础。如果原始对象的边界包含这样的曲面,则根据曲面拟合过程的结果对分割进行优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direct segmentation for reverse engineering
In reverse engineering a physical object is digitally reconstructed from a set of boundary points. In the segmentation phase these points are grouped into subsets to facilitate consecutive steps as surface fitting. In this paper we present a step segmentation method with subsequent classification of simple algebraic surfaces. Our method is direct in the sense that it operates directly on the point set in contrast to other approaches that are based on a triangulation of the data set. The segmentation process involves a fast algorithm for k-nearest neighbors search and an estimation of first and second order surface properties. First order segmentation, based on normal vectors, provides an initial subdivision of the surface and detects sharp edges as well as flat or highly curved areas. One of the main features of our method is to proceed by alternating the steps of segmentation and normal vector estimation. Second order segmentation subdivides the surface according to principal curvatures and provides a sufficient foundation for the classification of simple algebraic surfaces. If the boundary of the original object contains such surfaces the segmentation is optimized based on the result of a surface fitting procedure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信