广义高斯噪声下的迭代重加权最优线性回归

Fuxi Wen, W. Liu
{"title":"广义高斯噪声下的迭代重加权最优线性回归","authors":"Fuxi Wen, W. Liu","doi":"10.1109/ICDSP.2016.7868640","DOIUrl":null,"url":null,"abstract":"Generalized Gaussian distribution (GGD) is one of the most prominent and widely used parametric distributions to model the statistical properties of various phenomena. In this paper, we consider the linear regression problem in the presence of GGD noise employing the iteratively reweighted least squares (IRLS) algorithm. For the standard IRLS algorithm, an ℓp-norm minimization problem is solved iteratively. However, its performance depends on a properly chosen norm parameter p. To solve this problem, we propose a modified IRLS algorithm with a variable p, which is noise distribution dependent and can be updated online. Numerical studies show that the proposed method can normally converge within a few iterations. Furthermore, optimal performance is achieved in terms of normalized mean square error for different GGD noise models.","PeriodicalId":206199,"journal":{"name":"2016 IEEE International Conference on Digital Signal Processing (DSP)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Iteratively reweighted optimum linear regression in the presence of generalized Gaussian noise\",\"authors\":\"Fuxi Wen, W. Liu\",\"doi\":\"10.1109/ICDSP.2016.7868640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generalized Gaussian distribution (GGD) is one of the most prominent and widely used parametric distributions to model the statistical properties of various phenomena. In this paper, we consider the linear regression problem in the presence of GGD noise employing the iteratively reweighted least squares (IRLS) algorithm. For the standard IRLS algorithm, an ℓp-norm minimization problem is solved iteratively. However, its performance depends on a properly chosen norm parameter p. To solve this problem, we propose a modified IRLS algorithm with a variable p, which is noise distribution dependent and can be updated online. Numerical studies show that the proposed method can normally converge within a few iterations. Furthermore, optimal performance is achieved in terms of normalized mean square error for different GGD noise models.\",\"PeriodicalId\":206199,\"journal\":{\"name\":\"2016 IEEE International Conference on Digital Signal Processing (DSP)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Digital Signal Processing (DSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2016.7868640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2016.7868640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

广义高斯分布(GGD)是最突出和最广泛应用的参数分布之一,用于模拟各种现象的统计特性。本文采用迭代加权最小二乘(IRLS)算法研究了存在GGD噪声的线性回归问题。对于标准的IRLS算法,迭代地解决了一个最小化问题。然而,它的性能取决于正确选择的范数参数p。为了解决这个问题,我们提出了一种改进的IRLS算法,该算法具有变量p,该变量p依赖于噪声分布,并且可以在线更新。数值研究表明,该方法可以在几次迭代内正常收敛。此外,对于不同的GGD噪声模型,在归一化均方误差方面取得了最优的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iteratively reweighted optimum linear regression in the presence of generalized Gaussian noise
Generalized Gaussian distribution (GGD) is one of the most prominent and widely used parametric distributions to model the statistical properties of various phenomena. In this paper, we consider the linear regression problem in the presence of GGD noise employing the iteratively reweighted least squares (IRLS) algorithm. For the standard IRLS algorithm, an ℓp-norm minimization problem is solved iteratively. However, its performance depends on a properly chosen norm parameter p. To solve this problem, we propose a modified IRLS algorithm with a variable p, which is noise distribution dependent and can be updated online. Numerical studies show that the proposed method can normally converge within a few iterations. Furthermore, optimal performance is achieved in terms of normalized mean square error for different GGD noise models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信