{"title":"石榴:一个完全可伸缩的图形架构","authors":"Matthew Eldridge, Homan Igehy, P. Hanrahan","doi":"10.1145/344779.344981","DOIUrl":null,"url":null,"abstract":"Pomegranate is a parallel hardware architecture for polygon rendering that provides scalable input bandwidth, triangle rate, pixel rate, texture memory and display bandwidth while maintaining an immediate-mode interface. The basic unit of scalability is a single graphics pipeline, and up to 64 such units may be combined. Pomegranate's scalability is achieved with a novel “sort-everywhere” architecture that distributes work in a balanced fashion at every stage of the pipeline, keeping the amount of work performed by each pipeline uniform as the system scales. Because of the balanced distribution, a scalable network based on high-speed point-to-point links can be used for communicating between the pipelines. Pomegranate uses the network to load balance triangle and fragment work independently, to provide a shared texture memory and to provide a scalable display system. The architecture provides one interface per pipeline for issuing ordered, immediate-mode rendering commands and supports a parallel API that allows multiprocessor applications to exactly order drawing commands from each interface. A detailed hardware simulation demonstrates performance on next-generation workloads. Pomegranate operates at 87-99% parallel efficiency with 64 pipelines, for a simulated performance of up to 1.10 billion triangles per second and 21.8 billion pixels per second.","PeriodicalId":269415,"journal":{"name":"Proceedings of the 27th annual conference on Computer graphics and interactive techniques","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":"{\"title\":\"Pomegranate: a fully scalable graphics architecture\",\"authors\":\"Matthew Eldridge, Homan Igehy, P. Hanrahan\",\"doi\":\"10.1145/344779.344981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pomegranate is a parallel hardware architecture for polygon rendering that provides scalable input bandwidth, triangle rate, pixel rate, texture memory and display bandwidth while maintaining an immediate-mode interface. The basic unit of scalability is a single graphics pipeline, and up to 64 such units may be combined. Pomegranate's scalability is achieved with a novel “sort-everywhere” architecture that distributes work in a balanced fashion at every stage of the pipeline, keeping the amount of work performed by each pipeline uniform as the system scales. Because of the balanced distribution, a scalable network based on high-speed point-to-point links can be used for communicating between the pipelines. Pomegranate uses the network to load balance triangle and fragment work independently, to provide a shared texture memory and to provide a scalable display system. The architecture provides one interface per pipeline for issuing ordered, immediate-mode rendering commands and supports a parallel API that allows multiprocessor applications to exactly order drawing commands from each interface. A detailed hardware simulation demonstrates performance on next-generation workloads. Pomegranate operates at 87-99% parallel efficiency with 64 pipelines, for a simulated performance of up to 1.10 billion triangles per second and 21.8 billion pixels per second.\",\"PeriodicalId\":269415,\"journal\":{\"name\":\"Proceedings of the 27th annual conference on Computer graphics and interactive techniques\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"63\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 27th annual conference on Computer graphics and interactive techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/344779.344981\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th annual conference on Computer graphics and interactive techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/344779.344981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pomegranate: a fully scalable graphics architecture
Pomegranate is a parallel hardware architecture for polygon rendering that provides scalable input bandwidth, triangle rate, pixel rate, texture memory and display bandwidth while maintaining an immediate-mode interface. The basic unit of scalability is a single graphics pipeline, and up to 64 such units may be combined. Pomegranate's scalability is achieved with a novel “sort-everywhere” architecture that distributes work in a balanced fashion at every stage of the pipeline, keeping the amount of work performed by each pipeline uniform as the system scales. Because of the balanced distribution, a scalable network based on high-speed point-to-point links can be used for communicating between the pipelines. Pomegranate uses the network to load balance triangle and fragment work independently, to provide a shared texture memory and to provide a scalable display system. The architecture provides one interface per pipeline for issuing ordered, immediate-mode rendering commands and supports a parallel API that allows multiprocessor applications to exactly order drawing commands from each interface. A detailed hardware simulation demonstrates performance on next-generation workloads. Pomegranate operates at 87-99% parallel efficiency with 64 pipelines, for a simulated performance of up to 1.10 billion triangles per second and 21.8 billion pixels per second.