将粒子群算法应用于运动移动机器人在复杂动态环境下的PID控制

A. Aouf, L. Boussaid, A. Sakly
{"title":"将粒子群算法应用于运动移动机器人在复杂动态环境下的PID控制","authors":"A. Aouf, L. Boussaid, A. Sakly","doi":"10.1109/ICEMIS.2017.8273012","DOIUrl":null,"url":null,"abstract":"In robot navigation problem, many variables should be controlled in order to obtain the best upshot at the end of task. Indeed, the mobile robot ought to avoid obstacles and reach its final destination with the nethermost time and the shortest trajectory. It should be stable, accurate and replies quickly. Motivated by these demands, Particle Swarm Optimization for optimal PID controller for motion planning in a real complex environment is developed. Comparing to a Fuzzy logic controller, simulation results shows the efficiency of our suggested method.","PeriodicalId":117908,"journal":{"name":"2017 International Conference on Engineering & MIS (ICEMIS)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A PSO algorithm applied to a PID controller for motion mobile robot in a complex dynamic environment\",\"authors\":\"A. Aouf, L. Boussaid, A. Sakly\",\"doi\":\"10.1109/ICEMIS.2017.8273012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In robot navigation problem, many variables should be controlled in order to obtain the best upshot at the end of task. Indeed, the mobile robot ought to avoid obstacles and reach its final destination with the nethermost time and the shortest trajectory. It should be stable, accurate and replies quickly. Motivated by these demands, Particle Swarm Optimization for optimal PID controller for motion planning in a real complex environment is developed. Comparing to a Fuzzy logic controller, simulation results shows the efficiency of our suggested method.\",\"PeriodicalId\":117908,\"journal\":{\"name\":\"2017 International Conference on Engineering & MIS (ICEMIS)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Engineering & MIS (ICEMIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEMIS.2017.8273012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Engineering & MIS (ICEMIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEMIS.2017.8273012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在机器人导航问题中,为了在任务结束时获得最佳结果,需要控制许多变量。实际上,移动机器人应该避开障碍物,以最短的时间和最短的轨迹到达最终目的地。它应该稳定,准确,快速回复。基于这些需求,粒子群算法在实际复杂环境中用于运动规划的最优PID控制器中得到了发展。通过与模糊控制器的比较,仿真结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A PSO algorithm applied to a PID controller for motion mobile robot in a complex dynamic environment
In robot navigation problem, many variables should be controlled in order to obtain the best upshot at the end of task. Indeed, the mobile robot ought to avoid obstacles and reach its final destination with the nethermost time and the shortest trajectory. It should be stable, accurate and replies quickly. Motivated by these demands, Particle Swarm Optimization for optimal PID controller for motion planning in a real complex environment is developed. Comparing to a Fuzzy logic controller, simulation results shows the efficiency of our suggested method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信