通过结合基因表达与TF结合位点的相关性来重建转录网络

Ying-Zhe Hsu, Yuh-Jyh Hu
{"title":"通过结合基因表达与TF结合位点的相关性来重建转录网络","authors":"Ying-Zhe Hsu, Yuh-Jyh Hu","doi":"10.1109/MMSE.2003.1254450","DOIUrl":null,"url":null,"abstract":"One of the major challenges in molecular biology is to understand the precise mechanism by which gene expression is regulated. Reconstruction of transcription networks is essential to modelling this mechanism. We describe a novel approach for building transcription networks from transcription modules by combining expression profile correlations with probabilistic element assessment. To demonstrate its performance, we systematically tested it on 27 transcription modules and reconstructed the transcription network for 6 transcription factors and 15 genes involved in the yeast cell cycle. The experimental results show that our combinatorial approach can better filter false positives to increase the selectivity in prediction of target genes. The regulatory control relationships described by the network reconstructed also mostly agree with those in earlier studies.","PeriodicalId":322357,"journal":{"name":"Fifth International Symposium on Multimedia Software Engineering, 2003. Proceedings.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reconstruct transcription networks by combining gene expression correlations with TF binding sites\",\"authors\":\"Ying-Zhe Hsu, Yuh-Jyh Hu\",\"doi\":\"10.1109/MMSE.2003.1254450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the major challenges in molecular biology is to understand the precise mechanism by which gene expression is regulated. Reconstruction of transcription networks is essential to modelling this mechanism. We describe a novel approach for building transcription networks from transcription modules by combining expression profile correlations with probabilistic element assessment. To demonstrate its performance, we systematically tested it on 27 transcription modules and reconstructed the transcription network for 6 transcription factors and 15 genes involved in the yeast cell cycle. The experimental results show that our combinatorial approach can better filter false positives to increase the selectivity in prediction of target genes. The regulatory control relationships described by the network reconstructed also mostly agree with those in earlier studies.\",\"PeriodicalId\":322357,\"journal\":{\"name\":\"Fifth International Symposium on Multimedia Software Engineering, 2003. Proceedings.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fifth International Symposium on Multimedia Software Engineering, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSE.2003.1254450\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Symposium on Multimedia Software Engineering, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSE.2003.1254450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

分子生物学的主要挑战之一是理解调控基因表达的精确机制。转录网络的重建对于模拟这一机制至关重要。我们描述了一种通过结合表达谱相关性和概率元素评估从转录模块构建转录网络的新方法。为了证明其性能,我们系统地在27个转录模块上进行了测试,并重建了酵母细胞周期中6个转录因子和15个基因的转录网络。实验结果表明,我们的组合方法可以更好地过滤假阳性,提高目标基因预测的选择性。重构的网络所描述的调节控制关系也与早期的研究结果基本一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reconstruct transcription networks by combining gene expression correlations with TF binding sites
One of the major challenges in molecular biology is to understand the precise mechanism by which gene expression is regulated. Reconstruction of transcription networks is essential to modelling this mechanism. We describe a novel approach for building transcription networks from transcription modules by combining expression profile correlations with probabilistic element assessment. To demonstrate its performance, we systematically tested it on 27 transcription modules and reconstructed the transcription network for 6 transcription factors and 15 genes involved in the yeast cell cycle. The experimental results show that our combinatorial approach can better filter false positives to increase the selectivity in prediction of target genes. The regulatory control relationships described by the network reconstructed also mostly agree with those in earlier studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信